【題目】已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,則(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

【答案】A
【解析】解:∵0<a<3,由函數(shù)表達(dá)式 f(x)=ax2+2ax+4=a(x+1)2+4﹣a知,

其對(duì)稱軸為x=﹣1,又 x1+x2=1﹣a,

所以 (x1+x2)= (1﹣a),

∵0<a<3,

∴﹣2<1﹣a<1,

∴﹣1< (1﹣a)< ,

當(dāng) (x1+x2)=﹣1時(shí),此時(shí)f(x1)=f(x2),

當(dāng)圖象向右移動(dòng)時(shí),又x1<x2,

所以f(x1)<f(x2).

故選:A.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)的性質(zhì),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= 恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}, (Ⅰ)求A∩B、(UA)∪(UB);
(Ⅱ)若{x|2k﹣1≤x≤2k+1}A,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E為DD1的中點(diǎn),證明:BD1∥面EAC
(2)求證:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣ <φ< ,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象沿x軸方向向右平移 個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的 (縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[﹣ , ]時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知直線l的斜率為k,它與拋物線y2=4x相交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若 ,則|k|=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ ,g(x)=f2(x)﹣af(x)+2a有四個(gè)不同的零點(diǎn)x1 , x2 , x3 , x4 , 則[2﹣f(x1)][2﹣f(x2)][2﹣f(x3)][2﹣f(x4)]的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x|(2﹣x)
(1)作出函數(shù)f(x)的大致圖象,并指出其單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有三個(gè)不同的解,試確定實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案