【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.

(1)a=1,p∧q為真,求實(shí)數(shù)x的取值范圍;

(2)pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)

【解析】

試題分析:(1px2﹣5ax+4a20,其中a0,解得:ax4a;由于a=1,p化為:1x4.利用p∧q為真,求交集即可得出.

2pq的必要不充分條件,可得qp,且p推不出q,設(shè)A=a4a),B=34],則BA,即可得出.

解:(1px2﹣5ax+4a20,其中a0,解得:ax4a;q3x≤4

∵a=1∴p化為:1x4

∵p∧q為真,,解得3x≤4實(shí)數(shù)x的取值范圍是(3,4]

2pq的必要不充分條件,∴qp,且p推不出q,設(shè)A=a,4a),B=3,4]

BA,

,解得1a≤3

實(shí)數(shù)a的取值范圍是1a≤3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣mlnx在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回地連續(xù)摸三次,每次摸出2個(gè)球,若2個(gè)球顏色不同則為中獎(jiǎng),否則不中獎(jiǎng).

(1)當(dāng)n=3時(shí),設(shè)三次摸球中中獎(jiǎng)的次數(shù)為X,求隨機(jī)變量X的分布列;

(2)記三次摸球中恰有兩次中獎(jiǎng)的概率為P,求當(dāng)n取多少時(shí),P的值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),第t天(1≤t≤30,t∈N*)的旅游人數(shù)f(t)(單位:萬人)近似地滿足f(t)=4+ ,而人均日消費(fèi)俄g(t)(單位:元)近似地滿足g(t)=
(1)試求所有游客在該城市旅游的日消費(fèi)總額W(t)(單位:萬元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)表達(dá)式;
(2)求所有游客在該城市旅游的日消費(fèi)總額的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】購買一件售價(jià)為5 000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月付款一次,過1個(gè)月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復(fù)利計(jì)算(上月利息計(jì)入下月本金),那么每期應(yīng)付款多少元?(精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海上養(yǎng)殖基地A,接到氣象部門預(yù)報(bào),位于基地南偏東60°方向相距20(+1)海里的海面上有一臺風(fēng)中心,影響半徑為20海里,正以每小時(shí)10海里的速度沿某一方向勻速直線前進(jìn),預(yù)計(jì)臺風(fēng)中心在基地東北方向時(shí)對基地的影響最強(qiáng)烈且(+1)小時(shí)后開始影響基地持續(xù)2小時(shí),求臺風(fēng)移動(dòng)的方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案