【題目】已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,則 的取值范圍為 .
【答案】[2, )
【解析】解:a,b,c成等比數(shù)列,
設(shè) = =q,q>0,
則b=aq,c=aq2,
∴
∴ ,
解得 <q< .
則 = + = +q,
由f(q)= +q在( ,1)遞減,在(1, )遞增,
可得f(1)取得最小值2,由f( )=f( )= ,
即有f(q)∈[2, ).
所以答案是:[2, ).
【考點精析】通過靈活運用函數(shù)的最值及其幾何意義和等比數(shù)列的通項公式(及其變式),掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担煌椆剑即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在射線y=2x﹣3(x≥0),且與直線y=x+2和y=﹣x+4都相切.
(1)求圓C的方程;
(2)若P(x,y)是圓C上任意一點,求x+2y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)3,4,5,a,b的平均數(shù)是4,中位數(shù)是m,從3,4,5,a,b,m這組數(shù)據(jù)中任取一數(shù),取到數(shù)字4的概率為 ,那么3,4,5,a,b這組數(shù)據(jù)的方差為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兒童乘坐火車時,若身高不超過1.1m,則不需買票;若身高超過1.1m但不超過1.4m,則需買半票;若身高超過1.4m,則需買全票.試設(shè)計一個買票的算法,并寫出相應(yīng)的程序.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=8內(nèi)有一點P0(﹣1,2),AB為過點P0且傾斜角為α的弦;
(1)當 時,求AB的長;
(2)當弦AB被點P0平分時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進行內(nèi)部整頓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: + =1(a>b>0)過點(2,0),離心率為 .
(1)求C的方程;
(2)過點(1,0)且斜率為1的直線l與橢圓C相交于A,B兩點,求AB的中點M的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式ax2+bx+c<0的解集為({﹣∞,﹣1})∪( ,+∞),則不等式cx2﹣bx+a<0的解集為( )
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正實數(shù)a,b滿足a+b=1,則( )
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com