【題目】在數(shù)列{an},{bn}中,an=bn+n,bn=﹣an+1.
(1)證明:數(shù)列{an+3bn}是等差數(shù)列.
(2)求數(shù)列的前n項(xiàng)和Sn.
【答案】(1)證明見(jiàn)解析;(2)Sn
【解析】
(1)可將bn=﹣an+1代入an=bn+n計(jì)算可得數(shù)列{an}的通項(xiàng)公式,然后根據(jù)bn=﹣an+1可得數(shù)列{bn}的通項(xiàng)公式,即可計(jì)算出數(shù)列{an+3bn}的通項(xiàng)公式,再根據(jù)等差數(shù)列的定義法可證明數(shù)列{an+3bn}是等差數(shù)列;
(2)先根據(jù)(1)的結(jié)果計(jì)算出數(shù)列的通項(xiàng)公式,然后根據(jù)通項(xiàng)公式的特點(diǎn)可采用錯(cuò)位相減法計(jì)算出前n項(xiàng)和Sn.
(1)證明:由題意,將bn=﹣an+1代入an=bn+n,可得
an=bn+n=﹣an+1+n,即2an=n+1,
∴an,n∈N*,
∴bn=﹣an+11,n∈N*,
∴an+3bn32﹣n,
∵(an+1+3bn+1)﹣(an+3bn)=2﹣(n+1)﹣(2﹣n)=﹣1,
∴數(shù)列{an+3bn}是以﹣1為公差的等差數(shù)列.
(2)由(1)知,,
則Sn,
∴Sn,
兩式相減,可得
Sn
()
,/span>
∴Sn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科赫曲線(xiàn)是一種外形像雪花的幾何曲線(xiàn),一段科赫曲線(xiàn)可以通過(guò)下列操作步驟構(gòu)造得到,任畫(huà)一條線(xiàn)段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來(lái)的一條線(xiàn)段就變成了4條小線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“一次構(gòu)造”;用同樣的方法把每條小線(xiàn)段重復(fù)上述步驟,得到16條更小的線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線(xiàn).若要在構(gòu)造過(guò)程中使得到的折線(xiàn)的長(zhǎng)度達(dá)到初始線(xiàn)段的1000倍,則至少需要通過(guò)構(gòu)造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為:(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P的直角坐標(biāo)為,若直線(xiàn)l與曲線(xiàn)C分別相交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書(shū)九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱(chēng)之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).
(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫(xiě)出它每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)黨中央對(duì)新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門(mén)決定通過(guò)電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線(xiàn)上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對(duì)其數(shù)學(xué)網(wǎng)課授課方式的滿(mǎn)意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到了一個(gè)用戶(hù)滿(mǎn)意度評(píng)分的樣本,并繪制出莖葉圖如下:
若評(píng)分不低于80分,則認(rèn)為該用戶(hù)對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶(hù)對(duì)此教育機(jī)構(gòu)授課方式“不認(rèn)可”.
(1)請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶(hù)認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計(jì) | |
A城市 | |||
B城市 | |||
合計(jì) |
(2)以該樣本中A,B城市的用戶(hù)對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的頻率分別作為A,B城市用戶(hù)對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的概率.現(xiàn)從A城市和B城市的所有用戶(hù)中分別隨機(jī)抽取2個(gè)用戶(hù),用X表示這4個(gè)用戶(hù)中對(duì)此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶(hù)個(gè)數(shù),求X的分布列.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為,過(guò)其右焦點(diǎn)F的直線(xiàn)交橢圓C于M,N兩點(diǎn),交y軸于E點(diǎn).若,.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),證明:;
(2)若在只有一個(gè)零點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為
(1)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn).求
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com