【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問(wèn)卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過(guò)3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(1)根據(jù)表中數(shù)據(jù)判斷能否有的把握認(rèn)為“古文迷”與性別有關(guān)?

(2)先從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行理科學(xué)習(xí)時(shí)間的調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(3)現(xiàn)從(2)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行體育鍛煉時(shí)間的調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

參考公式: ,其中

【答案】(1)見(jiàn)解析;(2)5人中“古文迷”和“非古文迷”的人數(shù)分別為3人和2人;(3)見(jiàn)解析.

【解析】試題分析:(1)通過(guò)列聯(lián)表求得,對(duì)應(yīng)查表下結(jié)論;

(2)利用分層抽樣的原理,根據(jù)比例求人數(shù)即可;

(3)利用超幾何分布的原理求分布列即可.

試題解析:

(1)由列聯(lián)表得,

所以沒(méi)有的把握認(rèn)為“古文迷”與性別有關(guān).

(2)調(diào)查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分層抽樣的方法抽出5人,則“古文迷”的人數(shù)為人,“非古文迷”有人. 

即抽取的5人中“古文迷”和“非古文迷”的人數(shù)分別為3人和2人.

(3)因?yàn)?/span>為所抽取的3人中“古文迷”的人數(shù),所以的所有取值為1,2,3.

, ,

所以隨機(jī)變量的分布列為

1

2

3

于是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有五輛汽車,其中兩輛汽車的車牌尾號(hào)均為1. 兩輛汽車的車牌尾號(hào)均為2, 車的車牌尾號(hào)為6,已知在非限行日,每輛車可能出車或不出車, 三輛汽車每天出車的概率均為 兩輛汽車每天出車的概率均為,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:

車牌尾號(hào)

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求該公司在星期一至少有2輛汽車出國(guó)的概率;

(2)設(shè)表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,且上有三個(gè)零點(diǎn),1是其中一個(gè)零點(diǎn).

(1)求的取值范圍;

(2)若直線在曲線的上方部分所對(duì)應(yīng)的的集合為,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班全體女生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞但可見(jiàn)部分如圖所示,據(jù)此解答如下問(wèn)題

(1)求高三(1)班全體女生的人數(shù);

(2)求分?jǐn)?shù)在[80,90)之間的女生人數(shù)并計(jì)算頻率分布直方圖中[80,90)之間的矩形的高

(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析女生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個(gè))

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, 平面, ,點(diǎn)的中點(diǎn).

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽(yáng)馬中,側(cè)棱底面,且, 中點(diǎn),點(diǎn)上,且平面,連接,

(Ⅰ)證明: 平面;

(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,說(shuō)明理由;

(Ⅲ)已知 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù)使得不等式成立,求實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案