【題目】設(shè)f:x→x2是集合A到集合B的映射,如果B={1,2},則A∩B一定是( )
A.
B.或{1}
C.{1}
D.
【答案】B
【解析】解:由已知x2=1或x2=2,
解之得,x=±1或x=± .
若1∈A,則A∩B={1},
若1A,則A∩B=.
故A∩B=或{1},
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用集合的交集運(yùn)算和映射的相關(guān)定義的相關(guān)知識可以得到問題的答案,需要掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;對于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象;注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn).
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求三棱錐C1﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國共產(chǎn)黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名同學(xué)中至少有1人參加,且當(dāng)這3名同學(xué)都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+b(a>0)在區(qū)間[﹣1,4]上有最大值10和最小值1.設(shè)g(x)= .
(1)求a、b的值;
(2)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(3)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1⊥底面A1B1C1 , 底面為直角三角形,∠ACB=90°,AC=2,BC=1,CC1= ,P是BC1上一動點(diǎn),則A1P+PC的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)= 的定義域是( )
A.[0,1)∪(1,2]
B.[0,1)∪(1,4]
C.[0,1)
D.(1,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2=4和直線l:x=4,M為l上一動點(diǎn),A1 , A2為圓C與x軸的兩個交點(diǎn),直線MA1 , MA2與圓C的另一個交點(diǎn)分別為P、Q.
(1)若M點(diǎn)的坐標(biāo)為(4,2),求直線PQ方程;
(2)求證直線PQ過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=log4(4x+1)+ax(a∈R).
(1)若函數(shù)f(x)是定義在R上的偶函數(shù),求a的值;
(2)若不等式f(x)+f(﹣x)≥mt+m對任意x∈R,t∈[﹣2,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com