【題目】已知 , ,函數(shù) 的最小值為4.
(1)求 的值;
(2)求 的最小值.
【答案】
(1)解:因?yàn)椋? ,
所以 ,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立,又 , ,
所以 ,所以 的最小值為 ,所以 .
(2)解:由(1)知 , .
當(dāng)且僅當(dāng) , 時(shí), 的最小值為 .
【解析】(1)根據(jù)絕對(duì)值的性質(zhì),可得| x + a | + | x b | ≥ | a b | = | a + b | ,所以 ,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立,又 , ,所以 ,所以 的最小值為 ,所以 .
(2)因?yàn)?a + b = 4 , b = 4 a ,將b參數(shù)化掉最后變成一個(gè)一元二次方程,就可以求出其最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”,以及對(duì)二次函數(shù)在閉區(qū)間上的最值的理解,了解當(dāng)時(shí),當(dāng)時(shí),;當(dāng)時(shí)在上遞減,當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,且f(2017)=2016,則f(﹣2017)=( 。
A.﹣2014
B.﹣2015
C.﹣2016
D.﹣2017
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點(diǎn),C(0,2a),給出下列4個(gè)命題:
p1:△ABC的重心在定直線7x﹣3y=0上,p2:|AB| 的最大值為2 ;
p3:△ABC的重心在定直線 3x﹣7y=0上;p4:|AB| 的最大值為2 .
其中的真命題為( )
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,底面梯形 中, ,平面 平面 , 是等邊三角形,已知 , .
(1)求證:平面 平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)是( )
①命題“x0∈R, +1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直角坐標(biāo)平面內(nèi)的兩個(gè)不同點(diǎn) 、 滿足條件:① 、 都在函數(shù) 的圖像上;② 、 關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì) 是函數(shù) 的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì) 與 看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù) ,則此函數(shù)的“友好點(diǎn)對(duì)”有( )對(duì).
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 ( 是參數(shù))和定點(diǎn) , 、 是圓錐曲線的左、右焦點(diǎn).
(1)求經(jīng)過點(diǎn) 且垂直于直線 的直線 的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,求直線 的極坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com