【題目】已知數(shù)列{an}滿足: + +…+ = (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anan+1 , Sn為數(shù)列{bn}的前n項(xiàng)和,對(duì)于任意的正整數(shù)n,Sn>2λ﹣ 恒成立,求實(shí)數(shù)λ的取值范圍.
【答案】
(1)解:由題意得,當(dāng)n=1時(shí), ,則a1=2,
當(dāng)n≥2時(shí), ,
則 ,
兩式相減得, = ,即an= ,
當(dāng)n=1時(shí),也符合上式,則an=
(2)解:由(1)得,bn=anan+1=
= =2( ),
所以Sn=2[(1﹣ )+( )+( )…+( )]
=2(1﹣ ),
則n越大, 越小,Sn越大,
即當(dāng)n=1時(shí),Sn最小為S1= ,
因?yàn)閷?duì)于任意的正整數(shù)n,Sn>2λ﹣ 恒成立,
所以 >2λ﹣ ,解得 ,
故實(shí)數(shù)λ的取值范圍是(﹣∞, )
【解析】(1)由題意和數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系式,求出 ,即可求出an;(2)把a(bǔ)n代入bn=anan+1化簡(jiǎn),利用裂項(xiàng)相消法求出Sn,根據(jù)數(shù)列的單調(diào)性求出Sn的最小值,由恒成立的條件列出不等式,求出實(shí)數(shù)λ的取值范圍.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( )
A. cm3
B. cm3
C. cm3
D. cm3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)C到點(diǎn)F(1,0)的距離比到直線x=﹣2的距離小1,動(dòng)點(diǎn)C的軌跡為E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m(km<0)與曲線E相交于A,B兩個(gè)不同點(diǎn),且 ,證明:直線l經(jīng)過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長(zhǎng)度相等,則b等于( )
A.±
B.±
C.±2
D.±
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)總體中有600個(gè)個(gè)體,隨機(jī)編號(hào)為001,002,…,600,利用系統(tǒng)抽樣方法抽取容量為24的一個(gè)樣本,總體分組后在第一組隨機(jī)抽得的編號(hào)為006,則在編號(hào)為051~125之間抽得的編號(hào)為( )
A.056,080,104
B.054,078,102
C.054,079,104
D.056,081,106
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的首項(xiàng)b1=1,且a2=b3 , S3=6b2 , n∈N* .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=bn+(﹣1)nan , 記數(shù)列{cn}的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com