【題目】如圖,在海岸處發(fā)現(xiàn)北偏東方向,距海里的處有一艘走私船,在處北偏西方向,距海里的處的我方輯私船奉命以海里/小時(shí)的速度追截走私船,此時(shí)走私船正以海里/小時(shí)的速度,以處向北偏東方向逃竄.問(wèn):輯私船沿什么方向行駛才能最快截獲走私船?并求出所需時(shí)間.

【答案】輯私船沿北偏東方向,需分鐘才能追上走私船

【解析】試題分析:設(shè)輯私船追上走私船需小時(shí),進(jìn)而表示出,進(jìn)而在中利用余弦定理求得,在中,根據(jù)正弦定理可得的值,進(jìn)而求得,求得的值,再利用求得的值

解析:如圖所示,設(shè)輯私船追上走私船需小時(shí),

則有,

中,

,,

根據(jù)余弦定理可求得

中,根據(jù)正弦定理可得

,

,,,

則有,(小時(shí))(分鐘).

所以輯私船沿北偏東方向,需分鐘才能追上走私船.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100位學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是、、、.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

(3)若這100名學(xué)生的語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).

分?jǐn)?shù)段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐,是正三角形,為其中心.面,,的中點(diǎn).

(1)證明:;

(2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人說(shuō):“擲一枚骰子一次得到的點(diǎn)數(shù)是2的概率是,這說(shuō)明擲一枚骰子6次會(huì)出現(xiàn)一次點(diǎn)數(shù)是2.對(duì)此說(shuō)法,同學(xué)中出現(xiàn)了兩種不同的看法:一些同學(xué)認(rèn)為這種說(shuō)法是正確的.他們的理由是:因?yàn)閿S一枚骰子一次得到點(diǎn)數(shù)是2的概率是,所以擲一枚骰子6次得到一次點(diǎn)數(shù)是2的概率P=×6=1,擲一枚骰子6次會(huì)出現(xiàn)一次點(diǎn)數(shù)是2”是必然事件,一定發(fā)生.還有一些同學(xué)覺(jué)得這種說(shuō)法是錯(cuò)誤的,但是他們卻講不出是什么理由來(lái).你認(rèn)為這種說(shuō)法對(duì)嗎?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.
注:年份代碼1﹣7分別對(duì)應(yīng)年份2008﹣2014.
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以證明;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
附注:
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:
回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A恒過(guò)點(diǎn),且與直線 相切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)探究在曲線上,是否存在異于原點(diǎn)的兩點(diǎn) ,當(dāng)時(shí),直線恒過(guò)定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案