分析 (1)令f(x)=t,根據(jù)f(x)的函數(shù)圖象判斷f(x)=t的解的個(gè)數(shù),得出t=1為方程t2+at+b=0的解.
(2)當(dāng)f(x)=t,t>0且t≠1時(shí),關(guān)于x的方程f2(x)+af(x)+b=0有9個(gè)不同實(shí)數(shù)解,據(jù)此即可求得實(shí)數(shù)a的取值范圍.
解答 解:(1)做出f(x)的函數(shù)圖象如圖所示:
設(shè)f(x)=t,則當(dāng)t=1時(shí),f(x)=t有5個(gè)解,當(dāng)t≠1時(shí),f(x)=t有4個(gè)解.
∵關(guān)于x的方程f2(x)+af(x)+b=0有9個(gè)不同的實(shí)數(shù)解,
∴關(guān)于t的方程t2+at+b=0有兩解,且t=1是其中一解,
∴1+a+b=0,即a+b=-1.
(2)當(dāng)f(x)=t,t>0且t≠1時(shí),關(guān)于x的方程f2(x)+af(x)+b=0有9個(gè)不同實(shí)數(shù)解,
∴t2+at-1-a=0,
∴a=-1-t,∵t>0且t≠1,
∴a∈(-∞,-2)∪(-2,-1)
點(diǎn)評(píng) 本題考查了方程的根與函數(shù)圖象的關(guān)系,數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3} | B. | {-2,-1,0,1,2} | C. | {1,2} | D. | {-2,-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | 2π | C. | $\frac{4π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,+∞) | B. | (-∞,0)∪(0,+∞) | C. | (-∞,0),(0,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com