【題目】已知在直角坐標系中,曲線的C參數(shù)方程為 (φ為參數(shù)),現(xiàn)以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ= .
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)在曲線C上是否存在一點P,使點P到直線l的距離最?若存在,求出距離的最小值及點P的直角坐標;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C: (θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)寫出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點M,N,MN的中點為P,l1與l2的交點為Q,l1恒過點A,求|AP||AQ|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓 + =1(a>b>0)的上頂點為A,左右頂點為B,C,右焦點為F,|AF|=3,且△ABC的周長為14.
(1)求橢圓的離心率;
(2)過點M(4,0)的直線l與橢圓相交于不同兩點P,Q,點N在線段PQ上,設λ= = ,試判斷點N是否在一條定直線上,并求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,
(1)若 ,求函數(shù) 處的切線方程
(2)設函數(shù) ,求 的單調(diào)區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=4x,焦點為F,過點P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若 + =18,則k= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設圓C與直線l交于點A、B,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓O:x2+y2=b2經(jīng)過橢圓 (0<b<2)的焦點.
(1)求橢圓E的標準方程;
(2)設直線l:y=kx+m交橢圓E于P,Q兩點,T為弦PQ的中點,M(﹣1,0),N(1,0),記直線TM,TN的斜率分別為k1 , k2 , 當2m2﹣2k2=1時,求k1k2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com