通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于教師引入概念和描述問(wèn)題所用的時(shí)間.講座開(kāi)始時(shí),學(xué)生的興趣激增;中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生的接受能力,x表示引入概念和描述問(wèn)題所用的時(shí)間(單位:分鐘),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)開(kāi)講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多長(zhǎng)時(shí)間?
(2)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘,教師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這道難題?
分析:(1)求學(xué)生的接受能力最強(qiáng)其實(shí)就是要求分段函數(shù)的最大值,方法是分別求出各段的最大值取其最大即可;
(2)令f(x)=55,分段求出x,兩個(gè)時(shí)間之差就是持續(xù)的時(shí)間,最后和13分鐘比較大小即可.
解答:解:(1)當(dāng)0<x≤10時(shí),f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,為開(kāi)口向下的二次函數(shù),對(duì)稱軸為x=13
故f(x)遞增,最大值為f(10)=59;當(dāng)10<x≤16時(shí),f(x)=59;當(dāng)30≥x>16時(shí),f(x)為減函數(shù),且f(x)<59,因此,開(kāi)講10分鐘后,學(xué)生達(dá)到最強(qiáng)接受能力(為59),能維持6分鐘時(shí)間.
(2)當(dāng)0<x≤10時(shí),令f(x)=55,解得x=6或x=20(舍去),
當(dāng)16<x≤30時(shí),令f(x)=55,解得x=17
1
3

因此學(xué)生達(dá)到(含超過(guò))55的接受能力的時(shí)間為17
1
3
-6=11
1
3
<13,
故老師不能在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題.
點(diǎn)評(píng):本題考查分段函數(shù),考查分段函數(shù)圖象和增減性,此題學(xué)生容易出錯(cuò),原因是學(xué)生把分段函數(shù)定義理解不清,自變量取值不同,函數(shù)解析式不同是分段函數(shù)最顯著的特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:
-0.1x2+2.6x+43(0<x≤10)
59(10<x≤16)
-3x+107(16<x≤30)

(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講15分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及10分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過(guò)實(shí)驗(yàn)分析得知:f(t)=
-t2+24t+100,0<t≤10
240,10<t≤20
-7t+380,20<t≤40

(1)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開(kāi)始后5分鐘與講課開(kāi)始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間.授課開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示提出和講授概念的時(shí)間(單位:分),可有以下的關(guān)系:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59                            (10<x≤16)
-2x+91                 (16<x≤40)

(1)開(kāi)講后多少分鐘,學(xué)生的接受能力最強(qiáng)?這個(gè)強(qiáng)度可以持續(xù)多長(zhǎng)時(shí)間?
(2)開(kāi)講后5分鐘與開(kāi)講后20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:f(x)=
-0.1x2+2.6x+43
59
-3x+107
(0<x≤10)
(10<x≤16)
(16<x≤30)

(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

同步練習(xí)冊(cè)答案