【題目】已知點(diǎn)A(-1,2),B(2,8)及,求點(diǎn)C,D和
【答案】 見解析.
【解析】試題分析:
設(shè)點(diǎn)C(x1,y1),D(x2,y2),分別求得的坐標(biāo)表示,然后結(jié)合向量的坐標(biāo)運(yùn)算得到方程組,求解方程組可得點(diǎn)C,D的坐標(biāo)分別為(0,4)和(-2,0),則=(-2,-4).
試題解析:
設(shè)點(diǎn)C(x1,y1),D(x2,y2),由題意可得=(x1+1,y1-2),=(3,6),=(-1-x2,2-y2),=(-3,-6),
因?yàn)?/span>=,=-,所以(x1+1,y1-2)= (3,6)=(1,2),
(-1-x2,2-y2)=- (-3,-6)=(1,2),
則有和
解得和
所以點(diǎn)C,D的坐標(biāo)分別為(0,4)和(-2,0),所以=(-2,-4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.
(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 與 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|﹣x|x|+2a+1(a<0,)若存在x0∈[﹣1,1],使f(x0)≤0,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 的前 項(xiàng)和為 ,且滿足 ,求數(shù)列 的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出 , , .
猜想: .
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng) 時(shí), , 猜想成立
②假設(shè) ( N*)時(shí),猜想成立,即 .
那么,當(dāng) 時(shí),由已知 ,得 .
又 ,兩式相減并化簡,得 (用含 的代數(shù)式表示).
所以,當(dāng) 時(shí),猜想也成立.
根據(jù)①和②,可知猜想對任何 N*都成立.
思路2:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出 .
由已知 ,寫出 與 的關(guān)系式: ,
兩式相減,得 與 的遞推關(guān)系式: .
整理: .
發(fā)現(xiàn):數(shù)列 是首項(xiàng)為 , 公比為的等比數(shù)列.
得出:數(shù)列 的通項(xiàng)公式 , 進(jìn)而得到 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)( )
A.48
B.36
C.30
D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補(bǔ)貼,貸款期限分為6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,對于這五種期限的貸款政府分別補(bǔ)貼200元、300元、300元、400元、400元,從2016年享受此項(xiàng)政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如表:
貸款期限 | 6個(gè)月 | 12個(gè)月 | 18個(gè)月 | 24個(gè)月 | 36個(gè)月 |
頻數(shù) | 20 | 40 | 20 | 10 | 10 |
以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
(Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報(bào)此項(xiàng)貸款,計(jì)算其中恰有兩人選擇貸款期限為12個(gè)月的概率;
(Ⅱ)設(shè)給某享受此項(xiàng)政策的自主創(chuàng)業(yè)人員補(bǔ)貼為X元,寫出X的分布列;該市政府要做預(yù)算,若預(yù)計(jì)2017年全市有600人申報(bào)此項(xiàng)貸款,則估計(jì)2017年該市共要補(bǔ)貼多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 .命題 :方程 表示焦點(diǎn)在 軸上的橢圓;命題 :圓錐曲線 的離心率 ,若命題 為真命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com