【題目】某學校實行自主招生,參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.

1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列及數(shù)學期望和方差.

【答案】1)甲通過自主招生初試的可能性更大.2)見解析,,.

【解析】

1)分別利用超幾何概型和二項分布計算甲、乙通過自主招生初試的概率即可;

2)乙答對題的個數(shù)服從二項分布,利用二項分布的公式,計算概率,再利用,即得解.

解:(1)參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試,在這8個試題中甲能答對6個,

甲通過自主招生初試的概率

參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試.

在這8個試題中乙能答對每個試題的概率為,

乙通過自主招生初試的概率

甲通過自主招生初試的可能性更大.

2)根據(jù)題意,乙答對題的個數(shù)的可能取值為0,1,23,4.

的概率分布列為:

0

5

10

15

20

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點且斜率為1的直線交拋物線于兩點,( )

A. 1 B. 2 C. 4 D. 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲乙兩班各6名學生,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

甲班

2

9 1 0

8 2

18

17

16

乙班

0

0 1 4 7

3

(1)判斷哪個班的平均身高較高, 并說明理由;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這6名學生中隨機抽取兩名學生,求至少有一名身高不低于的學生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標賽男子團體決賽中,中國隊與韓國隊相遇,中國隊男子選手A,B,C,D,E依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負相互獨立.賽會釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國隊以31獲勝的概率是多少?

2)求比賽局數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,如果都是整數(shù),就稱點為整點,下列命題中正確的是_____________(寫出所有正確命題的編號)

①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點

②如果都是無理數(shù),則直線不經(jīng)過任何整點

③直線經(jīng)過無窮多個整點,當且僅當經(jīng)過兩個不同的整點

④直線經(jīng)過無窮多個整點的充分必要條件是:都是有理數(shù)

⑤存在恰經(jīng)過一個整點的直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是( )

A. 命題的否定是

B. 命題為真是命題為真的必要不充分條件

C. ,則的否命題為真

D. 若實數(shù),則滿足的概率為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差)與某反季節(jié)新品種大豆種子的發(fā)芽數(shù)(顆)之間的關(guān)系進行分析研究,他們分別記錄了121日至125日每天的晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

121

122

123

124|

125

10

11

13

12

8

(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,剩下的2組數(shù)據(jù)用于線性回歸方程的檢驗.

1)請根據(jù)122日至124日的數(shù)據(jù),求出關(guān)于的線性回歸方程

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選的驗證數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?如果可靠,請預(yù)測溫差為14時種子的發(fā)芽數(shù);如果不可靠,請說明理由.

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是(

A.”是“”的必要不充分條件

B.對于命題,使得,則均有

C.為假命題,則均為假命題

D.命題“若,則”的否命題為“若,則

查看答案和解析>>

同步練習冊答案