【題目】設(shè)橢圓:,為左、右焦點,為短軸端點,且,離心率為,為坐標原點.
(1)求橢圓的方程,
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點,,且滿足?若存在,求出該圓的方程,若不存在,說明理由.
【答案】(1);(2)見解析
【解析】
(1)由題意可得方程2cb=4,e,且a2=b2+c2;從而聯(lián)立解出橢圓C的方程為1;
(2)假設(shè)存在圓心在原點的圓x2+y2=r2,使得該圓的任意一條切線與橢圓C恒有兩個交點M、N,則可得0;再設(shè)M(x1,y1),N(x2,y2),當切線斜率存在時,設(shè)該圓的切線的方程為y=kx+m,與橢圓聯(lián)立,利用韋達定理及條件可得3m2﹣8k2﹣8=0,代入△從而可解得m的范圍,進而解出所求圓的方程,再驗證當切線的斜率不存在時也成立即可.
(1))∵橢圓C:1(a>b>0),
由題意可得,
2cb=4,e,且a2=b2+c2;
聯(lián)立解得,;
故橢圓C的方程為1;
(2)假設(shè)存在圓心在原點的圓x2+y2=r2,
使得該圓的任意一條切線與橢圓C恒有兩個交點M、N,
∵||=||,
∴0;
設(shè)M(x1,y1),N(x2,y2),
當切線斜率存在時,設(shè)該圓的切線的方程為y=kx+m,
解方程組得,
(1+2k2)x2+4kmx+2m2﹣8=0,
則△=(4km)2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0;
即8k2﹣m2+4>0;
∴x1+x2,x1x2;
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2;
要使0,
故x1x2+y1y2=0;
即0;
所以3m2﹣8k2﹣8=0,
所以3m2﹣8≥0且8k2﹣m2+4>0;
解得m或m;
因為直線y=kx+m為圓心在原點的圓的一條切線,
所以圓的半徑為r,r2;
故r;
即所求圓的方程為x2+y2;
此時圓的切線y=kx+m都滿足m或m;
而當切線的斜率不存在時切線為x=±與橢圓1的兩個交點為(,±),(,±);
滿足0,
綜上所述,存在圓心在原點的圓x2+y2滿足條件.
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論中不正確的是( )
A.若兩個平面有一個公共點,則它們有無數(shù)個公共點
B.若已知四個點不共面,則其中任意三點不共線
C.若點既在平面內(nèi),又在平面內(nèi),則與相交于,且點在上
D.任意兩條直線不能確定一個平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100元.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖像如圖所示,關(guān)于有以下5個結(jié)論:
(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應(yīng)的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結(jié)論的編號是( )
A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),.已知函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和的圖象在公共點(x0,y0)處有相同的切線,
(i)求證:在處的導數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,某學校140名老師均在微信好友群中參與了“微信運動”,對運動10000步或以上的老師授予“運動達人”稱號,低于10000步稱為“參與者”,為了解老師們運動情況,選取了老師們在4月28日的運動數(shù)據(jù)進行分析,統(tǒng)計結(jié)果如下:
運動達人 | 參與者 | 合計 | |
男教師 | 60 | 20 | 80 |
女教師 | 40 | 20 | 60 |
合計 | 100 | 40 | 140 |
(Ⅰ)根據(jù)上表說明,能否在犯錯誤概率不超過0.05的前提下認為獲得“運動達人”稱號與性別有關(guān)?
(Ⅱ)從具有“運動達人”稱號的教師中,采用按性別分層抽樣的方法選取10人參加全國第四屆“萬步有約”全國健走激勵大賽某賽區(qū)的活動,若從選取的10人中隨機抽取3人作為代表參加開幕式,設(shè)抽取的3人中女教師人數(shù)為,寫出的分布列并求出數(shù)學期望.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),以該直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系下,圓C2的方程為ρ=﹣2cosθ+2sinθ.
(Ⅰ)求直線C1的普通方程和圓C2的圓心的極坐標;
(Ⅱ)設(shè)直線C1和圓C2的交點為A,B,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)
①當平面ABE∥平面CDF時,AC∥平面BFDE
②當平面ABE∥平面CDF時,AE∥CD
③當A、C重合于點P時,PG⊥PD
④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com