.經(jīng)過雙曲線的右焦點且斜率為2的直線被雙曲線截得的線段的長是( 。

A.            B.           C.            D.

 

【答案】

B

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線中心在原點,焦點在x軸上,實軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點與雙曲線相交于A、B兩點,以AB為直徑的圓與雙曲線的右準線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設AB中點為H,若
HM
HN
=-
16
3
,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
,點A、B在雙曲線的右支上,線段AB經(jīng)過雙曲線的右焦點F2,|AB|=m,另一焦點為F1,那么△ABF1的周長是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的方程為,點A,B在雙曲線的右支上,線段AB經(jīng)過雙曲線的右焦點F2,|AB|=m,F1為另一焦點,則△ABF1的周長為(  )

A.2a+2m

B.4a+2m

C.a+m

D.2a+4m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線與雙曲線的右支交于不同的兩點

(1)求實數(shù)的取值范圍;

(2)是否存在實數(shù),使得以線段為直徑的圓經(jīng)過雙曲線的右焦點?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的方程為-=1,點A、B在雙曲線的右支上,線段AB經(jīng)過雙曲線的右焦點F2,|AB|=m,F1為另一焦點,則△ABF1的周長為(    )

A.2a+2m                                     B.4a+2m

C.a+m                                       D.2a+4m

查看答案和解析>>

同步練習冊答案