【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.點E是棱PC的中點,平面ABE與棱PD交于點F. (Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF與平面AEF所成的二面角的正弦值.

【答案】證明:(Ⅰ)∵底面ABCD是菱形,∴AB∥CD, 又∵AB面PCD,CD面PCD,∴AB∥面PCD
又∵A,B,E,F(xiàn)四點共面,且平面ABEF∩平面PCD=EF,
∴AB∥EF
解:(Ⅱ)取AD中點G,連接PG,GB,
∵PA=PD,∴PG⊥AD,
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PG⊥平面ABCD
∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中點,∴AD⊥GB,
如圖,以G為原點,GA、GB、GP所在直線為坐標軸建立空間直角坐標系G﹣xyz
由PA=PD=AD=2得,G(0,0,0),A(1,0,0),
, ,D(﹣1,0,0),
又∵AB∥EF,點E是棱PC中點,∴點F是棱PD中點,
, ,
設平面AFE的法向量為
則有 ,∴ ,
不妨令x=3,則平面AFE的一個法向量為 ,
∵BG⊥平面PAD,∴ 是平面PAF的一個法向量,

∴平面PAF與平面AFE所成的二面角的正弦值為:


【解析】(Ⅰ)推導出AB∥CD,從而AB∥面PCD,由此能證明AB∥EF.(Ⅱ)取AD中點G,連接PG,GB,以G為原點,GA、GB、GP所在直線為坐標軸建立空間直角坐標系G﹣xyz,利用向量法能求出平面PAF與平面AFE所成的二面角的正弦值.
【考點精析】本題主要考查了空間中直線與直線之間的位置關系的相關知識點,需要掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象(
A.關于點( ,0)對稱
B.可由函數(shù)f(x)的圖象向右平移 個單位得到
C.可由函數(shù)f(x)的圖象向左平移 個單位得到
D.可由函數(shù)f(x)的圖象向左平移 個單位得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集為R,記實數(shù)t的最大值為a.
(1)求a;
(2)若正實數(shù)m,n滿足4m+5n=a,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a(x+ )+blnx(其中a,b∈R)
(Ⅰ)當b=﹣4時,若f(x)在其定義域內為單調函數(shù),求a的取值范圍;
(Ⅱ)當a=﹣1時,是否存在實數(shù)b,使得當x∈[e,e2]時,不等式f(x)>0恒成立,如果存在,求b的取值范圍,如果不存在,說明理由(其中e是自然對數(shù)的底數(shù),e=2.71828…).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等腰直角△ABC中,AC=BC,D在AB邊上且滿足: ,若∠ACD=60°,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足∠AFB= .設線段AB的中點M在l上的投影為N,則 的最大值是( )
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的一個焦點為F(3,0),其左頂點A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點,設點N關于x軸的對稱點為N1(點N1與點M不重合),且直線N1M與x軸的交于點P,試問△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知橢圓 的離心率為 ,C為橢圓上位于第一象限內的一點.

(1)若點 的坐標為 ,求a,b的值;
(2)設A為橢圓的左頂點,B為橢圓上一點,且 ,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

同步練習冊答案