【題目】如圖,已知四邊形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分別為BE,BP,PC的中點(diǎn).
(1)求證:平面ABE⊥平面GHF;
(2)求直線GH與平面PBC所成的角θ的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)通過證明BC⊥平面ABE,FH∥BC,證得FH⊥平面ABE,即可證得面面垂直;
(2)建立空間直角坐標(biāo)系,利用向量方法求線面角的正弦值.
(1)由題:,AE⊥平面ABCD,BC平面ABCD,所以AE⊥BC,
四邊形ABCD是正方形,AB⊥BC,AE與AB是平面ABE內(nèi)兩條相交直線,
所以BC⊥平面ABE,F,H分別為BP,PC的中點(diǎn),所以FH∥BC,
所以FH⊥平面ABE,HF平面GHF,所以平面ABE⊥平面GHF;
(2)由題可得:DA,DC,DP兩兩互相垂直,所以以D為原點(diǎn),DA,DC,DP為x,y,z軸的正方向建立空間直角坐標(biāo)系如圖所示:
,
所以,設(shè)平面PBC的法向量,
,取為平面PBC的一個(gè)法向量,
所以直線GH與平面PBC所成的角θ的正弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體中,是的中點(diǎn),點(diǎn)是上一點(diǎn),,,.動(dòng)點(diǎn)在上底面上,且滿足三棱錐的體積等于1,則直線與所成角的正切值的最大值為( )
A.B.C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市旅游管理部門為提升該市26個(gè)旅游景點(diǎn)的服務(wù)質(zhì)量,對(duì)該市26個(gè)旅游景點(diǎn)的交通、安全、環(huán)保、衛(wèi)生、管理五項(xiàng)指標(biāo)進(jìn)行評(píng)分,每項(xiàng)評(píng)分最低分0分,最高分100分,每個(gè)景點(diǎn)總分為這五項(xiàng)得分之和,根據(jù)考核評(píng)分結(jié)果,繪制交通得分與安全得分散點(diǎn)圖、交通得分與景點(diǎn)總分散點(diǎn)圖如下:
請(qǐng)根據(jù)圖中所提供的信息,完成下列問題:
(I)若從交通得分前6名的景點(diǎn)中任取2個(gè),求其安全得分都大于90分的概率;
(II)若從景點(diǎn)總分排名前6名的景點(diǎn)中任取3個(gè),記安全得分不大于90分的景點(diǎn)個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(III)記該市26個(gè)景點(diǎn)的交通平均得分為安全平均得分為,寫出和的大小關(guān)系?(只寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐P-ABCD的所有棱長(zhǎng)均為6,正方形ABCD的中心為坐標(biāo)原點(diǎn)O,AD,BC平行于x軸,AB、CD平行于y軸,頂點(diǎn)P在z軸的正半軸上,點(diǎn)M、N分別在PA,BD上,且.
(1)若,求直線MN與PC所成角的大;
(2)若二面角A-PN-D的平面角的余弦值為,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點(diǎn)、右頂點(diǎn)分別為F,A,過原點(diǎn)的直線與橢圓C交于點(diǎn)P、Q(點(diǎn)P在第一象限內(nèi)),連結(jié)PA,QF.若,的面積是面積的3倍.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知M為線段PA的中點(diǎn),連結(jié)QA,QM.
①求證:Q,F,M三點(diǎn)共線;
②記直線QP,QM,QA的斜率分別為,,,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,且,,,點(diǎn)在面上的投影恰在上,點(diǎn)為中點(diǎn).
(1)求證:為線段的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,以原點(diǎn)為圓心,短半軸長(zhǎng)為半徑的圓恰好經(jīng)過橢圓的兩焦點(diǎn),且該圓截直線所得的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過定點(diǎn)的直線交橢圓于兩點(diǎn)、,橢圓上的點(diǎn)滿足,試求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國(guó)務(wù)院面對(duì)“突發(fā)災(zāi)難”果斷采取措施,舉國(guó)上下,萬眾一心支援武漢,全國(guó)各地醫(yī)療隊(duì)陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔(dān)“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導(dǎo)”活動(dòng),為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導(dǎo).春節(jié)期間隨機(jī)安排甲乙兩位志愿者為一位初中生輔導(dǎo)功課共3次,每位志愿者至少輔導(dǎo)1次,每一次只有1位志愿者輔導(dǎo),到甲恰好輔導(dǎo)兩次的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的參數(shù)方程與直線的普通方程;
(2)設(shè)點(diǎn)過為曲線上的動(dòng)點(diǎn),點(diǎn)和點(diǎn)為直線上的點(diǎn),且滿足為等邊三角形,求邊長(zhǎng)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com