【題目】如圖,已知圓N:x2+(y+ 2=36,P是圓N上的點,點Q在線段NP上,且有點D(0, )和DP上的點M,滿足 =2 , =0.
(1)當(dāng)P在圓上運動時,求點Q的軌跡方程;
(2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點A、B,又點C( ,2),求△ABC面積最大值時對應(yīng)的直線l的方程.

【答案】
(1)解:由題意,MQ是線段DP的中垂線,∴|NP|=|NQ|+|QP|=|QN|+|QD|=6>|DN|=2 ,

∴Q的軌跡是以D,N為焦點的橢圓,且c= ,a=3,b=2,

∴求點Q的軌跡方程是 =1


(2)解:設(shè)l:y= x+m,A(x1,y1),B(x2,y2),

與橢圓聯(lián)立,可得9x2+6mx+2m2﹣18=0,

x1+x2=﹣ m,x1x2= (2m2﹣18),

|AB|= = ,

C( ,2)到直線l的距離d= ,

S= =

∴m=±3時,S最大,此時直線l的方程為y= x±3


【解析】(1)當(dāng)P在圓上運動時,利用橢圓的定義,求點Q的軌跡方程;(2)△ABC的面積取到最大值問題,要先建立關(guān)于某個自變量的函數(shù),后再求此函數(shù)的最大值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 分別為內(nèi)角的對邊,且

(1)求角的大;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

2)解關(guān)于x不等式:gx2+2x+gx-4)>0;

3)若對任意xR,不等式f2x)≥mfx-4恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,討論函數(shù)零點的個數(shù);

(2)若,當(dāng)=1時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學(xué)生有關(guān)系?

合計

110

50

合計

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(1-2x)(x2-2).

(1)求f(x)的單調(diào)區(qū)間和極值;

(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.

查看答案和解析>>

同步練習(xí)冊答案