【題目】已知四棱錐,底面是菱形,平面,點(diǎn)中點(diǎn),點(diǎn)中點(diǎn).

(1) 證明:平面平面;

(2) 求二面角的平面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】

(1)先由已知條件證明為等邊三角形,可得,利用線面垂直的的性質(zhì)可證,得到,進(jìn)而證明面;(2)先由二面角的定義找出二面角的平面角,利用余弦定理可求出此角的余弦值.

(1)證明:連BD.∵AB=AD,∠DAB=60°,

∴△ADB為等邊三角形,∴E是AB中點(diǎn).∴AB⊥DE,∵PD⊥面ABCD,AB面ABCD,∴AB⊥PD.

∵DE面PED,PD面PED,DE∩PD=D,

∴AB⊥面PED,∵AB面PAB.∴面PED⊥面PAB.

(2)解:∵AB⊥平面PED,PE面PED,∴AB⊥PE.連結(jié)EF,∵ EF面PED,∴AB⊥EF.

∴ ∠PEF為二面角P-AB-F的平面角.

設(shè)AD=2,那么PF=FD=1,DE=

在△PEF中,PE=,EF=2,PF=1

∴cos∠PEF=

即二面角P-AB-F的平面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.(12分)
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=6,an+1=4Sn+1,n∈N*
(1)求通項(xiàng)an;
(2)設(shè)bn=an﹣n﹣4,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)一次有放回地隨機(jī)摸取3次,每次摸取一個(gè)球

I)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果;

)若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x﹣1)﹣kx+k+1.
(1)當(dāng)k=1時(shí),證明:f(x)≤0;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)證明: + +…+ (n∈N* , 且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣klnx,(常數(shù)k>0).
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x≥1,f(x)>0恒成立,試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn),DE=EC.

(1)求證:平面ABE⊥平面BEF;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設(shè)函數(shù)f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c﹣ a,求f(B)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案