【題目】已知,求的最大值及相應(yīng)的的值.
【答案】12.
【解析】試題分析:根據(jù)的定義域?yàn)?/span>,令,根據(jù)單調(diào)性,得出,然后即可確定的最大值及相應(yīng)的的值.
試題解析: ∵f(x)=2+log3x,x∈[1,3],
∴y=[f(x)]2+f(x)=(log3x)2+5log3x+6,其定義域?yàn)?/span>[1,3].
令t=log3x
∵t=log3x在[1,3]上單調(diào)遞增
∴0≤t≤1.
∴y=[f(x)]2+f(x)=t2+5t+6(0≤t≤1).
從而要求y=[f(x)]2+f(x)在[1,3]上的最大值,只需求y=t2+5t+6在[0,1]上的最大值即可.
∵y=t2+5t+6在[0,1]上單調(diào)遞增,
∴當(dāng)t=1,即x=3時(shí),ymax=12.
∴當(dāng)x=3時(shí),y=[f(x)]2+f(x)的最大值為12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0 , 2 )(x0> )是拋物線C上一點(diǎn),圓M與線段MF相交于點(diǎn)A,且被直線x= 截得的弦長為 |MA|,若 =2,則|AF|等于( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)M(0,1)的直線l交橢圓C: 于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),當(dāng)△ABF1周長最大時(shí),直線l的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點(diǎn) ,動(dòng)圓P經(jīng)過點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷一批進(jìn)價(jià)為每件30元的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價(jià)x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(x,y)的對應(yīng)點(diǎn),并確定y與x的一個(gè)函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點(diǎn)M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則 ②若,則
③若,則 ④若,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列不等式:1+ + >1,1+ + +…+ > ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com