如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.
(Ⅰ)證明見解析(Ⅱ)(Ⅲ)
19.解法一:(Ⅰ)平面ACE.  
∵二面角D—AB—E為直二面角,且,平面ABE.
 


 
(Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

∵正方形ABCD邊長為2,∴BG⊥AC,BG=,
平面ACE,
(Ⅲ)過點(diǎn)E作交AB于點(diǎn)O. OE=1.
∵二面角D—AB—E為直二面角,∴EO⊥平面ABCD.
設(shè)D到平面ACE的距離為h, 

平面BCE, 


 
∴點(diǎn)D到平面ACE的距離為

解法二:(Ⅰ)同解法一.
(Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直
線為x軸,AB所在直線為y軸,過O點(diǎn)平行
于AD的直線為z軸,建立空間直角坐標(biāo)系
O—xyz,如圖.
面BCE,BE面BCE,,
的中點(diǎn),

 設(shè)平面AEC的一個(gè)法向量為,
解得
是平面AEC的一個(gè)法向量.
又平面BAC的一個(gè)法向量為
∴二面角B—AC—E的大小為
(III)∵AD//z軸,AD=2,∴,
∴點(diǎn)D到平面ACE的距離
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在五棱錐中,底面,,。
(1)證明:平面;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體中,的中點(diǎn),.(Ⅰ)求證:平面;(Ⅱ)求異面直線所成角的大小;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐(如圖)底面是邊長為2的正方形.側(cè)棱底面,、分別為的中點(diǎn),
(Ⅰ)求證:平面⊥平面;
(Ⅱ)直線與平面所成角的正弦值為,求PA的長;
(Ⅲ)在條件(Ⅱ)下,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,

D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(1)求證:AP⊥平面BDE;                
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,已知
(1)證明:平面;
(2)求異面直線PC與AD所成的角的大;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面平面ABCD,ABCD為正方形,是直角三角形,且,E、F、G分別是線段PA,PD,CD的中點(diǎn).
(1)求證:∥面EFC
(2)求異面直線EGBD所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

5u如圖,平行四邊形中,,正方形所在的平面和平面垂直,的中點(diǎn),的交點(diǎn).

⑴求證:平面
⑵求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,,,底面,的中點(diǎn),
(Ⅰ)求四棱錐的體積;
(Ⅱ) 求二面角的大。

查看答案和解析>>

同步練習(xí)冊答案