【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 若Sm1=﹣2,Sm=0,Sm+1=3,其中m≥2,則nSn的最小值為(
A.﹣3
B.﹣5
C.﹣6
D.﹣9

【答案】D
【解析】解:由Sm﹣1=﹣2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因為Sm=0,故ma1+ d=0,故a1=﹣ , 因為am+am+1=5,
故am+am+1=2a1+(2m﹣1)d=﹣(m﹣1)+2m﹣1=5,解得m=5.
所以 =﹣2,
nSn=n(﹣2n+ )= n3 n2 ,
設(shè)f(n)= n3 n2 , 則 ,由f′(n)=0,得n= 或n=0,
由n∈N* , 得當n=3時,nSn取最小值 =﹣9.
故選:D.
【考點精析】認真審題,首先需要了解等差數(shù)列的前n項和公式(前n項和公式:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個對稱中心是(
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品計劃提價,現(xiàn)有四種方案,方案(Ⅰ)先提價m%,再提價n%;方案(Ⅱ)先提價n%,再提價m%;方案(Ⅲ)分兩次提價,每次提價( )%;方案(Ⅳ)一次性提價(m+n)%,已知m>n>0,那么四種提價方案中,提價最多的是(
A.Ⅰ
B.Ⅱ
C.Ⅲ
D.Ⅳ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.則△ABC中最大角的度數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式|x+1|+|x﹣1|≤2的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤ ,|z|≤ ,求證:|x+2y﹣3z|≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對某市年齡在35歲的人調(diào)查,隨機選取年齡在35歲的100人進行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認為“支持生二孩與性別有關(guān)”?

支持生二孩

不支持生二孩

合計

男性

女性

合計

附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.150

0.100

0.050

0.010

0.005

0.001

k0

2.072

2.706

3.841

6.635

7.879

10.828

(Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡單隨機抽樣的方法從這6人中隨機抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計總體,從年齡在35歲人中隨機抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點D,E分別在邊AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 , 表示
(Ⅱ)設(shè)AB=6,AC=4,A=60°,求線段DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題為真命題的是(
A.若 x>y>0,則 ln x+ln y>0
B.“φ= ”是“函數(shù) y=sin(2x+φ) 為偶函數(shù)”的充要條件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù) x∈[1,10],執(zhí)行如圖所示的程序框圖,則輸出的x不大于63的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案