如圖橢圓 (a>b>0)的上頂點為A,左頂點為B, F為右焦點, 過F作平行與AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上.

(1)求橢圓的離心率;

    (2)若平行四邊形OCED的面積為, 求橢圓方程.

)(1)e =. (2)故橢圓方程為


解析:

(1) ∵焦點為F(c, 0), AB斜率為, 故CD方程為y=(x-c). 于橢圓聯(lián)立后消去y得2x2-2cxb2=0. ∵CD的中點為G(), 點E(c, -)在橢圓上, ∴將E(c, -)代入橢圓方程并整理得2c2=a2, ∴e =.

(2)由(Ⅰ)知CD的方程為y=(x-c),  b=c, a=c.

與橢圓聯(lián)立消去y得2x2-2cx-c2=0.

 ∵平行四邊形OCED的面積為

S=c|yC-yD|=c=c,

∴c=, a=2, b=. 故橢圓方程為 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年寶山區(qū)模擬理 ) (18分)已知橢圓C:(a>b>0)的一個焦點到長軸的兩個端點的距離分別為。

(1)求橢圓的方程;

(2)設過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)是橢圓(a>b>0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BC⊥BF,B,C,F(xiàn)三點確定的圓M恰好與直線l1相切.

   (Ⅰ)求橢圓的方程:

   (Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建高二第二次月考文科數(shù)學試卷(解析版) 題型:選擇題

如圖,F(xiàn)1,F2分別是橢圓 (a>0,b>0)的兩個焦點,A和B是以O為圓心,以|OF1|為半徑的圓與該左半橢圓的兩個交點,且△F2AB是等邊三角形,則橢圓的離心率為(    )

A.          B.          C.         D.-1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省福州市高三質(zhì)量檢測理科數(shù)學 題型:解答題

.(本小題滿分13分)

如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:y=-1上,且橢圓的離心率e =.(Ⅰ)求橢圓的標準方程;

(Ⅱ)設P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN

 

 

 

查看答案和解析>>

同步練習冊答案