【題目】已知,,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時直線的方程.
【答案】(1)(2)的最小值為1,此時直線:
【解析】
(1)用直接法求軌跡方程,即設(shè)動點(diǎn)為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;
(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,
設(shè),,則可得,,由求出,
將直線方程與聯(lián)立,得,求得,計(jì)算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.
(1)設(shè),則,即
整理得
(2)設(shè):,將其與曲線的方程聯(lián)立,得
即
設(shè),,則,
將直線:與聯(lián)立,得
∴
∴
設(shè).顯然
構(gòu)造
在上恒成立
所以在上單調(diào)遞增
所以,當(dāng)且僅當(dāng),即時取“=”
即的最小值為1,此時直線:.
(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有東、西、南、北四個進(jìn)入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個人口是否發(fā)生擁堵相互獨(dú)立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費(fèi)用為(,且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個主干道入口聘請交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個方案中應(yīng)該如何選擇?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,若,.
(1)證明:當(dāng)時,;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家每年都會對中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項(xiàng)目之一.今年某小學(xué)對本校六年級300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個數(shù)最低為10,最高為189.現(xiàn)將跳繩個數(shù)分成,,,,,6組,并繪制出如下的頻率分布直方圖.
(1)若一分鐘跳繩個數(shù)達(dá)到160為優(yōu)秀,求該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級部門要對該校體質(zhì)監(jiān)測情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計(jì)此校六年級男生一分鐘跳繩個數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為直角梯形,,,平面平面,是以為斜邊的等腰直角三角形,,為上一點(diǎn),且.
(1)證明:直線平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,,則下列命題正確的是( )
A.當(dāng)時,
B.函數(shù)有3個零點(diǎn)
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時,直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時,恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列:,,,(),與數(shù)列:,,,,(),記.
(1)若,求的值;
(2)求的表達(dá)式;
(3)已知,且存在正整數(shù),使得在中有4項(xiàng)為100,求的值,并指出哪4項(xiàng)為100.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圓錐的體積為,圓的直徑,點(diǎn)C是的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn).
(1)求該圓錐的側(cè)面積;
(2)求異面直線PB與CD所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com