精英家教網 > 高中數學 > 題目詳情
(2012•閔行區(qū)一模)無窮等比數列{an}的各項和為3,第2項為-
4
3
,則該數列的公比q=
-
1
3
-
1
3
分析:無窮等比數列前n項和的極限即為等比數列的各項和,由此可得關于q的方程,解之即可.
解答:解:由題意可得0<q<1,
lin
n→∞
Sn
=
lin
n→∞
a1(1-qn)
1-q
=
a1
1-q
=
a2÷q
1-q
=3
,
代入值可得
-
4
3
÷q
1-q
=3
,解得q=-
1
3
,
故答案為:-
1
3
點評:本題的考點是等比數列的前n項和,無窮等比數列前n項和的極限即為等比數列的各項和是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)設等差數列{an}的首項及公差均是正整數,前n項和為Sn,且a1>1,a4>6,S3≤12,則a2012=
4024
4024

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)在一圓周上給定1000個點.(如圖)取其中一點標記上數1,從這點開始按順時針方向數到第二個點標記上數2,從標記上2的點開始按順時針方向數到第三個點標記上數3,繼續(xù)這個過程直到1,2,3,…,2012都被標記到點上,圓周上這些點中有些可能會標記上不止一個數,在標記上2012的那一點上的所有標記的數中最小的是
12
12

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)設x1、x2是關于x的方程x2+mx+
1+m2
=0
的兩個不相等的實數根,那么過兩點A(x1,
x
2
1
)
B(x2,
x
2
2
)
的直線與圓x2+y2=1的位置關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•閔行區(qū)一模)將邊長分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.容易知道第1個陰影部分圖形的周長為8.設前n個陰影部分圖形的周長的平均值為f(n),記數列{an}滿足an=
f(n),當n為奇數
f(an-1) ,當n為偶數

(1)求f(n)的表達式;
(2)寫出a1,a2,a3的值,并求數列{an}的通項公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.

查看答案和解析>>

同步練習冊答案