已知直線l:y=kx+2(k為常數(shù))過橢圓
x2
a2
+
y2
b2
=1((a>b>0)的上頂點B和左焦點F,直線l被圓x2+y2=4截得的弦長為d、
(1)若d=2
3
,求k的值;
(2)若d≥
4
5
5
,求橢圓離心率e的取值范圍.
分析:(1)若d=2
3
,求k,先有平面幾何的知識求出點O到直線l的距離,再由點到直線的距離公式求出點O到直線l的距離,如此得方程.
(2)用斜率k表示出弦長d,代入d≥
4
5
5
,解出k的范圍,將離心率用k表示出來,利用單調(diào)性求出離心率的范圍,
解答:精英家教網(wǎng)解:(1)取弦的中點為M,連接OM由平面幾何知識,OM=1,
OM=
2
k2+1
=1.
解得k2=3,k=±
3

∵直線過F、B,∴k>0,
則k=
3

(2)設(shè)弦的中點為M,連接OM,
則OM2=
4
1+k2

d2=4(4-
4
1+k2
)≥(
4
5
5
2,
解得k2
1
4

e2=
c2
a2
=
(
2
k
)
2
4+(
2
k
)
2
=
1
1+k2
4
5
,
∴0<e≤
2
5
5
點評:考查直線與圓,與圓錐曲線的位置關(guān)系,本題的解題特點是把位置關(guān)系轉(zhuǎn)化為方程或方程組,這是此類題的常見方式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點M(1,1).
(I)當直線l經(jīng)過拋物線焦點F時,求點M關(guān)于直線l的對稱點N的坐標,并判斷點N是否在拋物線C上;
(II)當k(k≠0)變化且直線l與拋物線C有公共點時,設(shè)點P(a,1)關(guān)于直線l的對稱點為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx+1與橢圓
x2
2
+y2=1交于M、N兩點,且|MN|=
4
2
3
.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知圓M:(x+1)2+y2=8及定點N(1,0),點P是圓M上一動點,點Q為PN的中點,PM上一點G滿足
GQ
NP
=0

(1)求點G的軌跡C的方程;
(2)已知直線l:y=kx+m與曲線C交于A、B兩點,E(0,1),是否存在直線l,使得點N恰為△ABE的垂心?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx+b是橢圓C:
x24
+y2=1
的一條切線,F(xiàn)1,F(xiàn)2為左右焦點.
(1)過F1,F(xiàn)2作l的垂線,垂足分別為M,N,求|F1M|•|F2M|的值;
(2)若直線l與x軸、y軸分別交于A,B兩點,求|AB|的最小值,并求此時直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx-1與雙曲線C:x2-y2=4
(1)如果l與C只有一個公共點,求k的值;
(2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點,且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步練習冊答案