【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn).
(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.
【答案】(1);(2).
【解析】
試題分析:對(duì)于問題(1)首先求出從個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成的三角形的個(gè)數(shù),再求出以為直徑的三角形的個(gè)數(shù),即可求出所求的概率;對(duì)于問題(2)首先求出當(dāng)三角形的面積等于時(shí)點(diǎn)在半圓內(nèi)的位置,然后再根據(jù)幾何概型即可求得所需的結(jié)論.
試題解析:(1)從這個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成個(gè)三角形:,其中是直角三角形的只有個(gè),所以組成直角三角形的概率為.
(2)連接,取線段的中點(diǎn),則,
易求得,當(dāng)點(diǎn)在線段上時(shí),,
所以只有當(dāng)點(diǎn)落在陰影部分時(shí),面積才能大于,而,所以由幾何概型的概率公式得的面積大于的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)了兩種具有自主知識(shí)產(chǎn)權(quán)的操作系統(tǒng),分別命名為“天下”、“東方”.這兩套操作系統(tǒng)均適用于手機(jī)、電腦、車聯(lián)網(wǎng)、物聯(lián)網(wǎng)等,且較國際同類操作系統(tǒng)更加流暢.
(1)為了解喜歡“天下”系統(tǒng)是否與性別有關(guān),隨機(jī)調(diào)查了名男用戶和名女用戶,每位用戶對(duì)“天下”系統(tǒng)給出喜歡或不喜歡的評(píng)價(jià),得到下面列聯(lián)表:
請(qǐng)問:能否有的把握認(rèn)為男、女用戶對(duì)“天下”系統(tǒng)的喜歡有差異?
附:.
(2)該公司選定萬名用戶對(duì)“天下”和“東方”操作系統(tǒng)(以下簡稱“天下”、“東方”)進(jìn)行測試,每個(gè)用戶只能從“天下”或“東方”中選擇一個(gè)使用,每經(jīng)過一個(gè)月后就給用戶一次重新選擇“天下”或“東方”的機(jī)會(huì).這個(gè)月選擇“天下”的用戶在下個(gè)月選擇“天下”的概率均為,選擇“東方”的概率均為,;這個(gè)月選擇“東方”的用戶在下個(gè)月選擇“天下”的概率均為,選擇“東方”的概率均為,.記表示第個(gè)月用戶選擇“天下”的概率,已知,,,,.
(ⅰ)求的值;
(ⅱ)證明:數(shù)列()為等比數(shù)列;
(ⅲ)預(yù)測選擇“天下”操作系統(tǒng)的用戶數(shù)量不超過多少萬人.(精確到1萬)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某商品每件的生產(chǎn)成本(元)與銷售價(jià)格(元)具有線性相關(guān)關(guān)系,對(duì)應(yīng)數(shù)據(jù)如表所示:
(元) | 5 | 6 | 7 | 8 |
(元) | 15 | 17 | 21 | 27 |
(1)求出關(guān)于的線性回歸方程;
(2)若該商品的月銷售量(千件)與生產(chǎn)成本(元)的關(guān)系為,,根據(jù)(1)中求出的線性回歸方程,預(yù)測當(dāng)為何值時(shí),該商品的月銷售額最大.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在點(diǎn)處的切線方程為,試確定函數(shù)的單調(diào)區(qū)間;
(2)①當(dāng),時(shí),若對(duì)于任意,都有恒成立,求實(shí)數(shù)的最小值;②當(dāng)時(shí),設(shè)函數(shù),是否存在實(shí)數(shù),使得?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線E: 的左、右焦點(diǎn),P是雙曲線上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,是自然對(duì)數(shù)的底數(shù).
(1)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;
(2)若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,是長軸的一個(gè)端點(diǎn),弦過橢圓的中心,點(diǎn)在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于、,若的平分線總是垂直于軸,問是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說明理由;若存在,求取得最大值時(shí)的的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn),是坐標(biāo)原點(diǎn).
(1)若直線過點(diǎn)且,求直線的方程;
(2)已知點(diǎn),若直線不與坐標(biāo)軸垂直,且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門擬在隧道頂部安裝通風(fēng)設(shè)備(視作點(diǎn)),為了固定該設(shè)備,計(jì)劃除從隧道最高點(diǎn)處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點(diǎn)分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長度為.
(1)①設(shè),將表示為關(guān)于的函數(shù);
②設(shè),將表示為關(guān)于的函數(shù);
(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,說明如何設(shè)計(jì),所用的鋼管材料最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com