如果圓(x-2a)2+(y-a-3)2=4上總存在兩個點到原點的距離為1,則實數(shù)a的取值范圍是________.
因為圓(x-a)2+(y-a)2=8和圓x2+y2=1相交,兩圓圓心距大于兩圓半徑之差、小于兩圓半徑之和,可知結(jié)論為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C與圓(x-1)2+y2=1關(guān)于直線y=-x對稱,則圓C的方程(    )
A.(x+1)2+y2=1B.x2+y2=1
C.x2+(y+1)2=1D.x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知直線,圓.
(Ⅰ)證明:對任意,直線恒過一定點N,且直線與圓C恒有兩個公共點;
(Ⅱ)設(shè)以CN為直徑的圓為圓D(D為CN中點),求證圓D的方程為:
(Ⅲ)設(shè)直線與圓的交于A、B兩點,與圓D:交于點(異于C、N),當(dāng)變化時,求證為AB的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的一個焦點是圓的圓心,且虛軸長為,則雙曲線的離心率為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)如圖,A點在x軸上方,外接圓半徑,弦軸上且軸垂直平分邊,
(1)求外接圓的標(biāo)準(zhǔn)方程
(2)求過點且以為焦點的橢圓方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)、分別為不等邊的重心與外心、平行于 

(1)求點的軌跡的方程
(2)是否存在直線過點并與曲線交于兩點且以為直徑的
圓過坐標(biāo)原點若存在求出直線的方程若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=x-2被圓所截得的弦長為,則實數(shù)的值為( )
A.-1或B.1或3C.-2或6D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P(x,y)是曲線C:上任意一點,則的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動圓方程為參數(shù))
那么圓心軌跡是(    )
A.圓B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

同步練習(xí)冊答案