精英家教網 > 高中數學 > 題目詳情

已知拋物線1)求將這條拋物線的頂點平移到點(3,-2)時的函數解析式;(2)將此拋物線按怎樣的向量平移,能使平移后的函數解析式為?

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線C1:y2=4ax(a>0),橢圓C以原點為中心,以拋物線C1的焦點為右焦點,且長軸與短軸之比為
2
,過拋物線C1的焦點F作傾斜角為
π
4
的直線l,交橢圓C于一點P(點P在x軸上方),交拋物線C1于一點Q(點Q在x軸下方).
(1)求點P和Q的坐標;
(2)將點Q沿直線l向上移動到點Q′,使|QQ′|=4a,求過P和Q′且中心在原點,對稱軸是坐標軸的雙曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線方程為y2=2px(p>0).
(1)若點(2,2
2
)
在拋物線上,求拋物線的焦點F的坐標和準線l的方程;
(2)在(1)的條件下,若過焦點F且傾斜角為60°的直線m交拋物線于A、B兩點,點M在拋物線的準線l上,直線MA、MF、MB的斜率分別記為kMA、kMF、kMB,求證:kMA、kMF、kMB成等差數列;
(3)對(2)中的結論加以推廣,使得(2)中的結論成為推廣后命題的特例,請寫出推廣命題,并給予證明.
說明:第(3)題將根據結論的一般性程度給予不同的評分.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

已知拋物線1)求將這條拋物線的頂點平移到點(3,-2)時的函數解析式;(2)將此拋物線按怎樣的向量平移,能使平移后的函數解析式為?

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)已知拋物線.   

(1)求拋物線頂點的坐標.

(2)將此拋物線按怎樣的向量=平移,能使平移后的圖象的解析式為?

查看答案和解析>>

同步練習冊答案