【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

【答案】解:(Ⅰ)因為向量 =(a, b)與 =(cosA,sinB)平行,

所以asinB﹣ =0,由正弦定理可知:sinAsinB﹣ sinBcosA=0,因為sinB≠0,

所以tanA= ,可得A= ;

(Ⅱ)a= ,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,

△ABC的面積為: =


【解析】(I)先由平行可得asinB- bcosA=0,再利用正弦定理將邊轉(zhuǎn)化為角,可得tanA,進而可得A; (II)先利用余弦定理可得c,再利用三角形的面積公式可得△ABC的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

車速x(km/h)

60

70

80

90

100

事故次數(shù)y

1

3

6

9

11

(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;

(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程=x+;

(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預測在2016年該路段路況及相關安全設施等不變的情況下,車速達到110km/h時,可能發(fā)生的交通事故次數(shù).

(附:b=,=-,其中,為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.

分數(shù)(分數(shù)段)

頻數(shù)(人數(shù))

頻率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合計

50

1


(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學進入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學恰好答滿4道題而獲得一等獎的概率;
②記該同學決賽中答題個數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點O內(nèi),且滿足,設的面積, 的面積,則________.

【答案】

【解析】,可得:

延長OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,

如圖所示:

2+3+4=,

即O是DEF的重心,

△DOE,△EOF,△DOF的面積相等,

不妨令它們的面積均為1,

AOB的面積為,BOC的面積為AOC的面積為,

故三角形AOB,BOC,AOC的面積之比依次為: =3:2:4,

.

故答案為

點睛:本題考查的知識點是三角形面積公式,三角形重心的性質(zhì),平面向量在幾何中的應用,注意重要結論:點O內(nèi),且滿足 則三角形AOB,BOC,AOC的面積之比依次為 .

型】填空
束】
16

【題目】如圖,正方形ABCD的邊長為2,OAD的中點,射線OPOA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結論:

;

②任意,都有;

③任意,都有.

其中正確結論的序號是__________. (把所有正確結論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學經(jīng)典名著,它在集合學中的研究比西方早1千年,在《九章算術》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,OAD的中點,射線OPOA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結論:

;

②任意,都有;

③任意,都有.

其中正確結論的序號是__________. (把所有正確結論的序號都填上).

【答案】①②

【解析】試題分析::如圖,當時, 相交于點,,則,

∴①正確;:由于對稱性, 恰好是正方形的面積,

,∴②正確;:顯然是增函數(shù),∴③錯誤.

考點:函數(shù)性質(zhì)的運用.

型】填空
束】
17

【題目】化簡

1

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)左、右焦點分別為F1 , F2 , A(2,0)是橢圓的右頂點,過F2且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點M,N(M,N不同于點A),若 =0, = ;
①求證:直線l過定點;并求出定點坐標;
②求直線AT的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) )的最大值為 ,最小值為 .

(1)求 的值;

(2)將函數(shù) 圖象向右平移 個單位后,再將圖象上所有點的縱坐標擴大到原來的 倍,橫坐標不變,得到函數(shù) 的圖象,求方程 的解.

查看答案和解析>>

同步練習冊答案