為了解《中華人民共國道路交通安全法》在學(xué)生中的普及情況,調(diào)查部門對某學(xué)校6名學(xué)生進(jìn)行問卷調(diào)查,6人得分情況如下:
5,6,7,8,9,10。
把這6名學(xué)生的得分看成一個總體。
(1)求該總體的平均數(shù);
(2)求該總體的的方差;
(3)用簡單隨機(jī)抽樣方法從這6名學(xué)生中抽取2名,他們的得分組成一個樣本,求該樣本平均數(shù)于總體平均數(shù)之差的絕對值不超過0.5的概率。

(1) 7.5;(2)17.5;(3)

解析試題分析:(1)總體平均數(shù)為(5+6+7+8+9+10)/6=7.5   3分
(2)  52+62+72+82+92+102-6*(7.5)2=17.5    4分
(3)設(shè)事件A表示“樣本平均數(shù)于總體平均數(shù)之差的絕對值不超過0.5”,從總體抽取2個個體的所有基本事件數(shù)為15:
(5,10), (5,9), (5,8), (5,7), (5,6) , (6,10), (6,9),
(6,8), (6,7),(7,10) ,(7,9), (7,8); (8,10) ;(8,9), (9,10)。   4分
其中事件A包括基本事件數(shù)為: (5,10), (5,9),(6,8),(6,10), (6,9),,(7,9), (7,8)共7個.----2分
所以所求的概率為P(A)=7/15   1分
考點:平均數(shù);方差;簡單隨機(jī)抽樣;隨機(jī)事件的概率;用樣本的數(shù)字特征估計總體的數(shù)字特征。
點評:本題考查統(tǒng)計及古典概率的求法,易錯點是對基本事件分析不全面.古典概率的求法是一個重點,但通常不難,要認(rèn)真掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,將得到的點數(shù)分別記為.
(1)求直線與圓相切的概率;
(2)將的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

口袋中有大小、質(zhì)地均相同的7個球,3個紅球,4個黑球,現(xiàn)在從中任取3個球。
(1)求取出的球顏色相同的概率;
(2)若取出的紅球數(shù)設(shè)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某品牌汽車4S店對最近100位采用分期付款的購車者進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤。
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學(xué)期望EY

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟?br />下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求小球落入袋中的概率;
(Ⅱ)在容器入口處依次放入4個小球,記為落入袋中的小球個數(shù),試求的概率和的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校設(shè)計了一個實驗考查方案:考生從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中考生甲有道題能正確完成,道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)求甲、乙兩考生正確完成題數(shù)的概率分布列,并計算其數(shù)學(xué)期望;
(2)請分析比較甲、乙兩考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
分成5個路段,每個路段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘,假設(shè)他在各
交通崗是否遇到紅燈是相互獨立的,并且概率都是
(1)求張師傅此行時間不少于16分鐘的概率
(2)記張師傅此行所需時間為Y分鐘,求Y的分布列和均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(Ⅰ)求取出的4個球中恰有1個紅球的概率;
(Ⅱ)設(shè)“從甲盒內(nèi)取出的2個球恰有1個為黑球”為事件A;“從乙盒內(nèi)取出的2個球都是黑球”為事件B,求在事件A發(fā)生的條件下,事件B發(fā)生的概率;
(Ⅲ)設(shè)為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)文科班某同學(xué)參加廣東省學(xué)業(yè)水平測試,物理、化學(xué)、生物獲得等級A和獲得等級不是A的機(jī)會相等,物理、化學(xué)、生物獲得等級A的事件分別記為,物理、化學(xué)、生物獲得等級不是A的事件分別記為.
(I)試列舉該同學(xué)這次水平測試中物理、化學(xué)、生物成績是否為A的所有可能結(jié)果(如三科成績均為A記為();
(II)求該同學(xué)參加這次水平測試獲得兩個A的概率;

查看答案和解析>>

同步練習(xí)冊答案