(本小題滿分12分)如圖, 在直角梯形中,

點(diǎn)分別是的中點(diǎn),現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點(diǎn)到平面的距離.
.解(1)連結(jié)AC,底面ABCD是正方形,AC交BD于點(diǎn)F,且F是AC中點(diǎn)
又點(diǎn)E為PC中點(diǎn),EF∥PA,
∥平面PAD                         -------------5分
(2)設(shè)點(diǎn)A到平面PBC的距離為h。PD底面ABCD,PDBC,
又DCBC,DCPC=D,BC面PDC,BCPC.
又由PDDC,PD=DC=2,得PC=,
從而          --------------------8分
另一方面,由PD底面ABCD,ABBC,且PD=AB=BC=2,得

,從而得:,
即點(diǎn)A到平面PBC的距離為.                       ----------12分   

試題分析:(1)欲證EF∥平面APG,根據(jù)直線與平面平行的判定定理可知只需證AP與平面EFG內(nèi)一直線平行即可,取AD中點(diǎn)M,連接FM、MG,由條件知EF∥DC∥MG,則E、F、M、G四點(diǎn)共面,再根據(jù)三角形中位線定理知MF∥PA,滿足定理所需條件;
(2)利用等體積法來表示得到高度問題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是通過利用三就愛哦行的中位線來得到平行線,然后借助于線線平行來得到線面平行的證明。同時(shí)利用等體積法求解高度問題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖幾何體中,四邊形為矩形,,,,,.

(1)若的中點(diǎn),證明:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在空間直角坐標(biāo)系中,點(diǎn)與點(diǎn)的距離為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱柱中,已知,,則異面直線所成角的正弦值為(  )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)O-ABC是四面體,G1是△ABC的重心,G是OG1上的一點(diǎn),且OG=3GG1,若=x+y+z,則(x,y,z)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)A(x,2,3)與點(diǎn)B(-1,y,z)關(guān)于坐標(biāo)平面yOz對(duì)稱,則x=_____,y=______,z=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知向量平行,則=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)多面體的直觀圖、正(主)視圖、側(cè)(左)視圖如圖1和圖2所示,其中正(主)視圖、側(cè)(左)視圖均為邊長為的正方形.
(Ⅰ)請(qǐng)?jiān)趫D2指定的位置畫出多面體的俯視圖;
(Ⅱ)若多面體底面對(duì)角線AC、BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(Ⅲ)求該多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為)內(nèi)分別與軸、軸正方向相同的兩個(gè)單位向量,且,,則的面積等于            

查看答案和解析>>

同步練習(xí)冊(cè)答案