14.如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓交AC于點(diǎn)E,過點(diǎn)E作圓O的切線交BC于點(diǎn)F.
(1)求證:BC=2EF;
(2)若CE=3OA,求∠EFB的大。

分析 (1)由題意可知,F(xiàn)B,F(xiàn)E均為圓O的切線,F(xiàn)B=EF,由∠FEC+∠OEA=∠FEC+∠OAC=90°,由∠OAC+∠ACB=90°,∠FEC=∠ACB,EF=FC,BC=BF+FC=2EF;
(2)設(shè)OA=1,則CE=3,AB=2,由射影定理可知AB2=AE•AC,求得AE=1,AC=4,則$sin∠ACB=\frac{AB}{AC}=\frac{1}{2}$,由(1)可知,∠FEC=30°,則∠EFB=60°.

解答 解:(1)證明:由題意可知,F(xiàn)B,F(xiàn)E均為圓O的切線,
∴FB=EF,連接BE,OE,易知∠AEB=∠OEF=90°,
∴∠FEC+∠OEA=∠FEC+∠OAC=90°,
又∠OAC+∠ACB=90°,
∴∠FEC=∠ACB,
∴EF=FC,
∴BC=BF+FC=EF+EF=2EF…(5分)
(2)不妨設(shè)OA=1,則CE=3,AB=2,
在Rt△ABC中,由射影定理可知,AB2=AE•AC,22=AE•(AE+3),
∴AE=1,
∴AC=4,則$sin∠ACB=\frac{AB}{AC}=\frac{1}{2}$,
∴∠ACB=30°,
由(1)可知,∠FEC=30°,
∴∠EFB=60°.…(10分)

點(diǎn)評 本題考查切線的性質(zhì),射影定理的應(yīng)用,弦切角的性質(zhì),等腰三角形的性質(zhì),考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等差數(shù)列{an}中,Sn為它的前n項和,若a1>0,S16>0,S17<0,則當(dāng)Sn最大時,n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow-\overrightarrow{c}$)=0,則|$\overrightarrow{a}-\overrightarrow$|的取值范圍為( 。
A.[$\sqrt{7}$-1,$\sqrt{7}$+1]B.($\sqrt{7}$-1,$\sqrt{7}$+1)C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,過橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足為左焦點(diǎn)F,A,B分別為E的右頂點(diǎn),上頂點(diǎn),且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求橢圓E的方程;
(2)過原點(diǎn)O做斜率為k(k>0)的直線,交E于C,D兩點(diǎn),求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知全集為實數(shù)R,A={x|-2≤x≤3},B={x|x≥1,或x<-1},求A∩B,∁U (A∩B),(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q,若∠PAQ=60°,且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,則雙曲線的離心率為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn,Tn,已知$\frac{S_n}{T_n}$=$\frac{7n}{n+3}$,則$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{140}{23}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(Ⅰ)當(dāng)a=1,b=0時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)b=2時,若對任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,Q是PA的中點(diǎn).
(1)證明:PC∥平面BDQ;
(2)求點(diǎn)A到面BDQ的距離.

查看答案和解析>>

同步練習(xí)冊答案