12.已知函數(shù)f(x)=asinx在點(diǎn)(0,0)處的切線(xiàn)方程為y=2x,則a=( 。
A.1B.2C.4D.$\frac{1}{2}$

分析 由題意求導(dǎo)y′=acosx,從而可得acos0=2;從而解得a的值.

解答 解:函數(shù)f(x)=asinx的導(dǎo)數(shù)為y′=acosx,
∵函數(shù)f(x)=asinx在點(diǎn)(0,0)處的切線(xiàn)方程為y=2x,
而y=2x的斜率為2,
故acos0=2,
解得,a=2.
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的求法及其幾何意義的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線(xiàn)y2=2px(p>0)上一點(diǎn)P(1,t)(t>0)到焦點(diǎn)F的距離等于2.
(1)求拋物線(xiàn)的方程及點(diǎn)P、F坐標(biāo);
(2)過(guò)P點(diǎn)做互相垂直的兩條直線(xiàn)交拋物線(xiàn)于另外兩點(diǎn)A,B.
   ①當(dāng)直線(xiàn)AB的斜率為-$\frac{2}{5}$時(shí),求直線(xiàn)AB的方程;
   ②求證:直線(xiàn)AB經(jīng)過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=x-1,則不等式xf(x)≥0的解集為(-∞,-1]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(I)求函數(shù)f(x)的解析式
(II)現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}y-x≥0\\ x+y-4≥0\\ x-3y+12≥0\end{array}\right.$,則z=2x+y-1的最大值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知集合A={x||x-1|<2},B={x|(x-a)(x+2)<0},C={x|$\frac{x+11}{x+3}$≥2};
(1)若A∪B=B,求a的取值范圍;
(2)若A∪B=B∩C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a+3)x-5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某教育主管部門(mén)到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖:
根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76分為優(yōu)良.
(1)寫(xiě)出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)$f(x)={(\frac{1}{2})^{2{x^2}-3x+1}}$的增區(qū)間是$(-∞,\frac{3}{4}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案