已知定點A(a,0),動點P對極點O和點A的張角,在OP的延長線上取點Q,使|PQ|=|PA|.當(dāng)P在極軸上方運動時,求點Q的軌跡的極坐標(biāo)方程.

答案:略
解析:

解:設(shè)QP的坐標(biāo)分別是(ρ,θ),,則

在△POA中,,

|OQ|=|OP||PA|,∴


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(12.0),M為曲線
x=6+2cosθ
y=2sinθ
上的動點,若
AP
=2
AM
,試求動點P的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•萊蕪二模)已知定點A(
p2
,0)
(p為常數(shù),p>O),B為x軸負(fù)半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點在y軸上.
(I)求動點M的軌跡C的方程;
(Ⅱ)設(shè)EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當(dāng)p=2時,求|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)已知定點A(0,2),B(0,-2),C(2,0),動點P滿足:
AP
BP
=m|
pc
|2

(I)求動點P的軌跡方程,并說明方程表示的曲線類型;
(II)當(dāng)m=2時,設(shè)點P(x,y)(y≥0),求
y
x-8
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系XOY中,已知定點A(0,a),B(0,-a),M,N是x軸上兩個不同的動點,
OM
ON
=4a2(a∈R,a≠0)
,直線AM與直線BN交于C點.
(1)求點C的軌跡方程;
(2)若存在過點(0,-1)且不與坐標(biāo)軸垂直的直線l與點C的軌跡交于不同的兩點E、F,且|AE|=|AF|,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案