(本小題滿分12分)

已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為元/千克,每次購買配料需支付運(yùn)費(fèi)236元.每次購買來的配料還需支付保管費(fèi)用(若天購買一次,需要支付天的保管費(fèi))。其標(biāo)準(zhǔn)如下: 7天以內(nèi)(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實(shí)際剩余配料的重量,以每天0.03元/千克支付.

(1)當(dāng)9天購買一次配料時,求該廠用于配料的保管費(fèi)用是多少元?[

(2)設(shè)該廠天購買一次配料,求該廠在這天中用于配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購買一次配料才能使平均每天支付的費(fèi)用最少?

 

【答案】

(Ⅰ) 元 ;

(Ⅱ)當(dāng)有最小值393元。

【解析】本題主要考查對二次函數(shù)的最值,二次函數(shù)等知識點(diǎn)的理解和掌握,能根據(jù)題意列出算式是解此題的關(guān)鍵。

(1)當(dāng)9天購買一次時,該廠用于配料的保管費(fèi)用

 

(2)先分析得到,然后設(shè)該廠x天購買一次配料平均每天支付的費(fèi)用為

結(jié)合導(dǎo)數(shù)和均值不等式得到最值。

解:(Ⅰ)當(dāng)9天購買一次時,該廠用于配料的保管費(fèi)用

 元 ………………………………………………2分

(Ⅱ)(1)當(dāng)時,…………………4分

(2)當(dāng) 時,

                   ……………………………………………6分

    ∴ …………………………………………………7分

 ∴設(shè)該廠x天購買一次配料平均每天支付的費(fèi)用為

 ……………………………………………8分

當(dāng)時    上的減函數(shù).

當(dāng)且僅當(dāng)時,有最小值(元)

當(dāng)=≥393           

 當(dāng)且僅當(dāng)時取等號

(注:兩段上的最值錯一個扣一分)。

  ∵ ∴當(dāng)有最小值393元   …………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案