【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:
男生 | 女生 | 總計(jì) | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計(jì) | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別無(wú)關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別有關(guān)”
C.有99.9%的把握認(rèn)為“身高與性別無(wú)關(guān)”
D.有99.9%的把握認(rèn)為“身高與性別有關(guān)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來(lái)很神奇,其實(shí)原理是十分簡(jiǎn)單的,要學(xué)會(huì)盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗(yàn)證這個(gè)結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛(ài)好者進(jìn)行調(diào)查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計(jì) | |
男 | 23 | 30 | |
女 | 11 | ||
總計(jì) | 50 |
表(1)
并邀請(qǐng)其中20名男生參加盲擰三階魔方比賽,其完成情況如下表(2)所示.
成功完成時(shí)間(分鐘) | ||||
人數(shù) | 10 | 4 | 4 | 2 |
表(2)
(Ⅰ)將表(1)補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表(2)中成功完成時(shí)間在和這兩組內(nèi)的6名男生中任意抽取2人對(duì)他們的盲擰情況進(jìn)行視頻記錄,求2人成功完成時(shí)間恰好在同一組內(nèi)的概率.
附參考公式及參考數(shù)據(jù):,其中.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=2,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計(jì)值為;
本題參考數(shù)值:.
(1)若銷量y與單價(jià)x服從線性相關(guān)關(guān)系,求該回歸方程;
(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問(wèn):產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程是: ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)過(guò)原點(diǎn)的直線與曲線交于, 兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了增強(qiáng)民眾防控病毒的意識(shí),舉行了“預(yù)防新冠病毒知識(shí)競(jìng)賽”網(wǎng)上答題,隨機(jī)抽取人,答題成績(jī)統(tǒng)計(jì)如圖所示.
(1)由直方圖可認(rèn)為答題者的成績(jī)服從正態(tài)分布,其中,分別為答題者的平均成績(jī)和成績(jī)的方差,那么這名答題者成績(jī)超過(guò)分的人數(shù)估計(jì)有多少人?(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)
(2)如果成績(jī)超過(guò)分的民眾我們認(rèn)為是“防御知識(shí)合格者”,用這名答題者的成績(jī)來(lái)估計(jì)全市的民眾,現(xiàn)從全市中隨機(jī)抽取人,“防御知識(shí)合格者”的人數(shù)為,求.(精確到)
附:①,;②,則,;③,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,它的一個(gè)頂點(diǎn)A與拋物線的焦點(diǎn)重合.
1求橢圓C的方程;
2是否存在直線l,使得直線l與橢圓C交于M,N兩點(diǎn),且橢圓C的右焦點(diǎn)F恰為的垂心三條高所在直線的交點(diǎn)?若存在,求出直線l的方程:若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)求平面與平面所成銳二面角的余弦值;
(2)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與所成的角最小時(shí),求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com