【題目】已知函數(shù)滿足,且上為增函數(shù),,則不等式的解集為__________

【答案】

【解析】

f(﹣x)=﹣fx),化簡不等式.再分x>0和x<0時兩種情況加以討論,利用函數(shù)的單調(diào)性和f(1)=0,分別解關(guān)于x的不等式得到x的取值范圍,最后綜合可得原不等式的解集.

∵函數(shù)fx)滿足f(﹣x)=﹣fx)(x∈R),

fx)﹣f(﹣x)=fx)+fx)=2fx),

因此,不等式等價于

化簡得,

①當(dāng)x>0時,由于在(0,+∞)上fx)為增函數(shù)且f(1)=0,

∴由不等式fx)≤0=f(1),得0<x≤1;

②當(dāng)x<0時,﹣x>0,

不等式fx)≥0化成﹣fx)≤0,即f(﹣x)≤0=f(1),

解之得﹣x≤1,即﹣1≤x<0.

綜上所述,原不等式的解集為[﹣1,0)∪(0,1].

故答案為:[﹣1,0)∪(0,1]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)需要建造一個容積為8立方米,深度為2米的無蓋長方體水池,已知池壁的造價為每平方米100元,池底造價為每平方米300元,設(shè)水池底面一邊長為米,水池總造價為元,求關(guān)于的函數(shù)關(guān)系式,并求出水池的最低造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,均在圓上.

(1)求圓的方程;

(2)若直線與圓相交于、兩點,求的長;

(3)設(shè)過點的直線與圓相交于兩點,試問:是否存在直線,使得以為直徑的圓經(jīng)過原點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )

A. 無論點上怎么移動,異面直線所成角都不可能是

B. 無論點上怎么移動,都有

C. 當(dāng)點移動至中點時,才有與相交于一點,記為點,且

D. 當(dāng)點移動至中點時,直線與平面所成角最大且為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點為原點O的拋物線C1的焦點F與橢圓C2 =1(a>b>0)的右焦點重合,C1與C2在第一和第四象限的交點分別為A、B.
(1)若△AOB是邊長為2 的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點P為橢圓C2上的任一點,若直線AP、BP分別與x軸交于點M(m,0)和N(n,0),證明:mn=a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格(元)和時間(天)的關(guān)系如圖所示.

(1)求銷售價格(元)和時間(天)的函數(shù)關(guān)系式;

(2)若日銷售量(件)與時間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場第幾天時,日銷售額(元)最高,且最高為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù) 有以下四個命題:

①對于任意的,都有; ②函數(shù)是偶函數(shù);

③若為一個非零有理數(shù),則對任意恒成立;

④在圖象上存在三個點,,,使得為等邊三角形.其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點A在x軸上,點B的坐標(biāo)為(1,0).且點C與點D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內(nèi)隨機(jī)取一點,則該點取自空白部分的概率等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進(jìn)貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調(diào)銷售單價以提高銷量增加收益.據(jù)估算,若今年的實際銷售單價為元/件,則新增的年銷量(萬件).

(Ⅰ)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關(guān)系式;

(Ⅱ)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案