精英家教網 > 高中數學 > 題目詳情

【題目】 中, 所對的邊分別為,且.

(1)求角的大;

(2)若, , 的中點,求的長.

【答案】(1);(2).

【解析】試題分析:(1)由已知,利用正弦定理可得a2b2c22b,再利用余弦定理即可得出cosA,結合A的范圍即可得解A的值.
2ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,ABD中,由余弦定理求得BD的值.

試題解析:

(1)因為asin A(bc)sin B(cb)·sin C,

由正弦定理得a2(bc)b(cb)c

整理得a2b2c22bc,

由余弦定理得cos A

因為A∈(0,π)所以A.

(2)cos B,sin B,

所以cos Ccos[π(AB)]=-cos(AB)=-=-,

由正弦定理得b2,

所以CDAC1,

BCD,由余弦定理得BD2()2122×1××13,

所以BD.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數滿足對任意,都有成立,則實數的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和是Sn , 若點An(n, )在函數f(x)=﹣x+c的圖象上運動,其中c是與x無關的常數,且a1=3(n∈N*).
(1)求數列{an}的通項公式;
(2)記bn=a ,求數列{bn}的前n項和Tn的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某投資人欲將5百萬元獎金投入甲、乙兩種理財產品,根據銀行預測,甲、乙兩種理財產品的收益與投入獎金的關系式分別為,其中為常數且.設對乙種產品投入獎金百萬元,其中

1)當時,如何進行投資才能使得總收益最大;(總收益

2)銀行為了吸儲,考慮到投資人的收益,無論投資人獎金如何分配,要使得總收益不低于,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公差不為0的等差數列中,已知,其前項和的最大值為( )

A. 25 B. 26 C. 27 D. 28

【答案】B

【解析】設等差數列的公差為,

,

整理得,

,

,

∴當時,

最大,且.選B.

點睛:求等差數列前n項和最值的常用方法:

①利用等差數列的單調性, 求出其正負轉折項便可求得和的最值;

將等差數列的前n項和 (A、B為常數)看作關于n的二次函數,根據二次函數的性質求最值.

型】單選題
束】
9

【題目】如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為( )

A. B. C. 90 D. 81

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某網店統(tǒng)計了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數滿足,若函數圖象的交點為,則交點的所有橫坐標和縱坐標之和為( )

A. 0 B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形中,

1)若為等邊三角形,且, 的中點,求;

2)若 , ,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點.

(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大小.

查看答案和解析>>

同步練習冊答案