7.已知△ABC中,AB=$\sqrt{3}$,AC=1,∠CAB=30°,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$

分析 根據(jù)題意和三角形的面積公式直接求出△ABC的面積.

解答 解:∵△ABC中,AB=$\sqrt{3}$,AC=1,∠CAB=30°,
∴△ABC的面積S=$\frac{1}{2}•AB•AC•sin∠CAB$
=$\frac{1}{2}×\sqrt{3}×1×sin30°$=$\frac{1}{2}×\sqrt{3}×\frac{1}{2}$=$\frac{\sqrt{3}}{4}$,
故選:D.

點(diǎn)評 本題考查了三角形的面積公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1≤x≤7},B={x|1-2m<x<m+2},U=R.若A∩B=B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我校名教師參加我縣“六城”同創(chuàng)“干部職工進(jìn)網(wǎng)絡(luò),服務(wù)群眾進(jìn)社區(qū)”活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組[25,30),第二組[30,35),第三組[35,40),第四組[40,45),第五組[45,50],得到的頻率分布直方圖如圖所示:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5ab
如表是年齡的頻數(shù)分布表.
(1)求正整數(shù)a,b,N的值;
(2)根據(jù)頻率分布直方圖估計我校這N名教師年齡的中位數(shù)和平均數(shù);
(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F2,左準(zhǔn)線是l,若該雙曲線右支上存在點(diǎn)P,使PF2等于P到直線l的距離,則該雙曲線離心率的取值范圍是(1,$\sqrt{2}+1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{1+x}{1-x}$.
(Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)=$\frac{1+x}{1-x}$在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2$\frac{1+x}{1-x}$在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=2x2-kx-4在區(qū)間[-2,4]上具有單調(diào)性,則k的取值范圍是( 。
A.[-8,16]B.(-∞,-8]∪[16,+∞)C.(-∞,-8)∪(16,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知奇函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x}\\ 0\\{{x^2}+2x}\end{array}\begin{array}{l}{({x>0})}\\{({x=0})}\\{({x<0})}\end{array}}\right.$
(1)在直角坐標(biāo)系中畫出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域?yàn)椋?,4),函數(shù)g(x)=f(x+1)的定義域?yàn)榧螦,集合B={x|a<x<2a-1},若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(文)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,EF=CE,AB=$\sqrt{2}$EF.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.

查看答案和解析>>

同步練習(xí)冊答案