【題目】育才高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定在每周的周一、周三、周五的課外活動期間同時開設(shè)“茶藝”、“模擬駕駛”、“機器人制作”、“數(shù)學(xué)與生活”和“生物與環(huán)境”選修課,每位有興趣的同學(xué)可以在任何一天參加任何一門科目.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各選修課各天的滿座的概率如下表:
生物與環(huán)境 | 數(shù)學(xué)與生活 | 機器人制作 | 模擬駕駛 | 茶藝 | |
周一 | |||||
周三 | |||||
周五 |
(1)求茶藝選修課在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各選修課中滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,.
【解析】
試題分析:(1)根據(jù)相互獨立事件的概率乘法公式易得茶藝選修課在周一、周三、周五都不滿座的概率;(2)因為“生物與環(huán)境”、“數(shù)學(xué)與生活”、“機器人制作”、“模擬駕駛”滿座的概率相等,所以可把這四科看成次獨立重復(fù)試驗,與選修課“茶藝”按照相互獨立事件求得隨機變量取每個值得概率,得到其分布列和數(shù)學(xué)期望.
試題解析:(1)設(shè)茶藝在周一、周三、周五都不滿座為事件A,
則. ......2分
(2)的可能取值為0,1,2,3,4,5.
;
;
;
;
. ......8分
所以,隨機變量的分布列如下:
0 | 1 | 2 | 3 | 4 | 5 | |
......10分
故 ......12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點M在直線x+y-3=0上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎”;乙說:“甲、丙都未獲獎”,丙說:“我獲獎了”,丁說:“是乙獲獎”,四位歌手的話只有兩位是對的,則獲獎的歌手是 ( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,過點和的直線與原點的距離為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左、右焦點,過作直線交橢圓于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在R上的奇函數(shù),且對任意a、b,當(dāng)時,都有.
(1)若,試比較與的大小關(guān)系;
(2)若對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b∈R,則“a>0,b>0”是“a+b>0”的
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國西部某省4A級風(fēng)景區(qū)內(nèi)住著一個少數(shù)民族村,該村投資了800萬元修復(fù)和加強民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個月內(nèi)(每月按30天計算)每天的旅游人數(shù)f(x)與第x天近似地滿足 (千人),且參觀民俗文化村的游客人均消費g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,過點和的直線與原點的距離為.
(1)求橢圓的方程;
(2)設(shè)為橢圓的左、右焦點,過作直線交橢圓于 兩點,求△的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是( )
A. 對立事件 B. 互斥但不對立事件
C. 不可能事件 D. 必然事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com