已知函數(shù)
(1)當時,求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最小值;
(3)記函數(shù)圖象為曲線,設點,是曲線上不同的兩點,點為線段的中點,過點軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.

(1),(2)(3)不平行

解析試題分析:(1)利用導數(shù)求函數(shù)單調(diào)區(qū)間,分四步:第一步,求定義域,,第二步,求導,,關鍵在因式分解,目的解不等式. 第三步解不等式由,得,第四步,寫結(jié)論,的單調(diào)增區(qū)間為.(2)求函數(shù)最值,其實質(zhì)還是研究其單調(diào)性. 當時,由,得,,①當>1,即時,上是減函數(shù),所以上的最小值為.②當,即時,上是減函數(shù),在上是增函數(shù),所以的最小值為.③當,即時,上是增函數(shù),所以的最小值為.(3)是否平行,還是從假設平行出發(fā),探究等量關系是否成立. 設,則點N的橫坐標為,直線AB的斜率=,曲線C在點N處的切線斜率,由,不妨設,則,下面研究函數(shù)是否有大于1的解.易由函數(shù)單調(diào)性得方程無解.
試題解析:(1),      2分
因為,所以,解,得
所以的單調(diào)增區(qū)間為.                              4分
(2)當時,由,得,,
①當>1,即時,上是減函數(shù),
所以上的最小值為.                     6分
②當,即時,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),曲線經(jīng)過點,
且在點處的切線為.
(1)求、的值;
(2)若存在實數(shù),使得時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)求函數(shù)處的切線的斜率;
(2)求函數(shù)的最大值;
(3)設,求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(弧度),將綠化帶總長度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象在點處的切線方程為
.
(1)求實數(shù)的值;
(2)設.
①若上的增函數(shù),求實數(shù)的最大值;
②是否存在點,使得過點的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等.若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(1)令,討論內(nèi)的單調(diào)性并求極值;
(2)求證:當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)若方程有3個不同的根,求實數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實數(shù),使得上恰有兩個極值點,且滿足,若存在,求實數(shù)的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案