【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2個、3個、4個,乙袋中紅色、黑色、白色小球的個數(shù)均為3個,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,問兩只手中所取的球顏色不同的概率是多少?
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為X,求X的分布列和數(shù)學期望.

【答案】解:(1)設(shè)事件A為“兩手所取的球不同色”,
則P(A)=1﹣=
(2)依題意,X的可能取值為0,1,2,
左手所取的兩球顏色相同的概率為=,
右手所取的兩球顏色相同的概率為=
P(X=0)=(1﹣)(1﹣)=x=;
P(X=1)=x(1﹣)+(1-)x=;
P(X=2)=x=
∴X的分布列為:

X

0

1

2

P

EX=0×+1×+2×=
【解析】(1)設(shè)事件A為“兩手所取的球不同色”,由此能求出P(A)=1﹣=
(2)依題意,X的可能取值為0,1,2,左手所取的兩球顏色相同的概率為= , 右手所取的兩球顏色相同的概率為= . .分別求出P(X=0),P(X=1),P(X=2),由此能求出X的分布列和EX.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+xnqn1 , xi∈M,i=1,2,…n}.
(1)當q=2,n=3時,用列舉法表示集合A;
(2)設(shè)s,t∈A,s=a1+a2q+…+anqn1 , t=b1+b2q+…+bnqn1 , 其中ai , bi∈M,i=1,2,…,n.證明:若an<bn , 則s<t.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線x=﹣3上任意一點,過F作TF的垂線交橢圓C于點P,Q.
①證明:OT平分線段PQ(其中O為坐標原點);
②當 最小時,求點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)討論函數(shù)的單調(diào)性;

)若對于任意的,都存在,使得不等式成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線與軸平行.

(Ⅰ)試討論上的單調(diào)性;

(Ⅱ)(。┰O(shè)的最小值;

(ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)設(shè)男生甲被選中為事件A,女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

殘差可用來判斷模型擬合的效果;

設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;

線性回歸直線:必過點;

在一個列聯(lián)表中,由計算得,則有的把握確認這兩個變量間有關(guān)系其中);

其中錯誤的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(1,+∞)上的函數(shù)fx)=

(1)當m≠0時,判斷函數(shù)fx)的單調(diào)性,并證明你的結(jié)論;

(2)當m=時,求解關(guān)于x的不等式fx2-1)>f(3x-3).

查看答案和解析>>

同步練習冊答案