在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為.
(Ⅰ)求點A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線經(jīng)過點,傾斜角是
①求直線的參數(shù)方程
②求直線與直線的交點與點的距離
③在圓:上找一點使點到直線的距離最小,并求其最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P為半圓C:(為參數(shù),)上的點,點A的坐標(biāo)為(1,0),
O為坐標(biāo)原點,點M在射線OP上,線段OM與C的弧的長度均為。
(Ⅰ)以O(shè)為極點,軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo);
(Ⅱ)求直線AM的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).若以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.
(I)求曲線的直角坐標(biāo)方程;
(II)求直線被曲線所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
有人收集了春節(jié)期間平均氣溫x與某取暖商品銷售額y的有關(guān)數(shù)據(jù)如下表:
平均氣溫(℃) | ﹣2 | ﹣3 | ﹣5 | ﹣6 |
銷售額(萬元) | 20 | 23 | 27 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某商品銷售量y(件)與銷售價格x(元/件)負(fù)相關(guān),則其回歸方程可能是 ( )
A.=-10x+200 | B.=10x+200 |
C.=-10x-200 | D.=10x-200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列結(jié)論正確的是( )
①相關(guān)關(guān)系是一種非確定性關(guān)系;
②任一組數(shù)據(jù)都有回歸方程;
③散點圖能直觀地反映數(shù)據(jù)的相關(guān)程度;
A.①② | B.②③ | C.①③ | D.①②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com