已知曲線
x=4cosθ
y=2
3
sinθ
上一點(diǎn)P到點(diǎn)A(-2,0),B(2,0)的距離之差為2.則△PAB為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形
曲線
x=4cosθ
y=2
3
sinθ

表示的橢圓標(biāo)準(zhǔn)方程為
x2
16
+
y2
12
=1
,
可知點(diǎn)A(-2,0)、B(2,0)橢圓的焦點(diǎn),
根據(jù)橢圓的定義,|PA|+|PB|=2a=8.
∵|PA|-|PB|=2,
∴|PA|=5,|PB|=3
∴|AB|=4
∴△PAB是直角三角形
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線
x2
m
-
y2
n
=1(m>0,n>0)上的點(diǎn)P(
5
,-
3
)作圓x2+y2=m的切線,切點(diǎn)為A、B,若
PA
PB
=0,則該雙曲線的離心率的值是(  )
A.4B.3C.2D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線
x2
16
-
y2
9
=1
上的點(diǎn)P到點(diǎn)(5,0)的距離為6,則P到點(diǎn)(-5,0)的距離為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

“mn<0”是方程“mx2+ny2=1表示雙曲線”的( 。
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓和雙曲線
y2
16
-
x2
m
=1(m>0)有相同的焦點(diǎn),P(3,4)是橢圓和雙曲線漸近線的一個(gè)交點(diǎn),求m的值及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線
x2
36
-
y2
49
=1的漸近線方程是(  )
A.
x
36
±
y
49
=0
B.
y
36
±
x
49
=0
C.
x
6
±
y
7
=0
D.
x
7
±
y
6
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線
x2
a2
-
y2
b2
=1
的左焦點(diǎn)F作⊙O:x2+y2=a2的兩條切線,記切點(diǎn)為A,B,雙曲線左頂點(diǎn)為C,若∠ACB=120°,則雙曲線的漸近線方程為(  )
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線C
x2
m
+y2=1
的離心率為2,則實(shí)數(shù)m的值為(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1,F(xiàn)2是雙曲線
x2
4
-y2=1
的左右焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案