【題目】某藝校在一天的6節(jié)課中隨機(jī)安排語文、數(shù)學(xué)、外語三門文化課和其他三門藝術(shù)課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為(用數(shù)字作答).

【答案】
【解析】解:把語文、數(shù)學(xué)、外語三門文化課排列,有 種方法,這三門課中間存在兩個空,在兩個空中,
①若每個空各插入1節(jié)藝術(shù)課,則排法種數(shù)為 =72,
②若兩個空中只插入1節(jié)藝術(shù)課,則排法種數(shù)為 =216,
③若語文、數(shù)學(xué)、外語三門文化課相鄰排列,把三門文化課捆綁為為一個整體,
然后和三門藝術(shù)課進(jìn)行排列,則排法種數(shù)為 =144,
而所有的排法共有 =720種,
故在課表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術(shù)課的概率為 =
故答案為
三門文化課排列,中間有兩個空,若每個空各插入1節(jié)藝術(shù)課,則排法種數(shù)為 ,若兩個空中只插入1節(jié)藝術(shù)課,則排法種數(shù)為 =216,三門文化課中相鄰排列,則排法種數(shù)為 =144,而所有的排法共有 =720種,由此求得所求事件的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面 是棱的中點(diǎn),

.

(1)求證: 平面

(2)如果是棱上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:y=a和l2:y= (其中a>0),若直線l1與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)A,B,直線l2與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)C,D.記線段AC和BD在x軸上的投影長度分別為 m,n.令f(a)=log4
(1)求f(a)的表達(dá)式;
(2)當(dāng)a變化時,求出f(a)的最小值,并指出取得最小值時對應(yīng)的a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一根水平放置的長方體枕木的安全負(fù)荷與它的厚度d的平方和寬度a的乘積成正比,與它的長度l的平方成反比.

(1)在a>d>0的條件下,將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)榱撕穸龋,枕木的安全?fù)荷會發(fā)生變化嗎?變大還是變?
(2)現(xiàn)有一根橫截面為半圓(半圓的半徑為R= )的柱形木材,用它截取成橫截面為長方形的枕木,其長度即為枕木規(guī)定的長度l,問橫截面如何截取,可使安全負(fù)荷最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|(k+2)x2+2kx+1=0}有且僅有2個子集,則實(shí)數(shù)k的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:車輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: , 稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=aex+ +b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)設(shè)曲線y=f(x)在點(diǎn)(2,f(2))的切線方程為3x﹣2y=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在實(shí)數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且 >2,則不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若以曲線上任意一點(diǎn)為切點(diǎn)作切線,曲線上總存在異于的點(diǎn),以點(diǎn)為切點(diǎn)作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:

①函數(shù)的圖象具有“可平行性”;

②定義在的奇函數(shù)的圖象都具有“可平行性”;

③三次函數(shù)具有“可平行性”,且對應(yīng)的兩切點(diǎn), 的橫坐標(biāo)滿足;

④要使得分段函數(shù)的圖象具有“可平行性”,當(dāng)且僅當(dāng).

其中的真命題個數(shù)有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案