分析:①根據(jù)函數(shù)的解析式求得f
n(
)=
-
()n>0,可得①不正確.
②確定函數(shù)的單調(diào)性,利用零點(diǎn)存在定理,進(jìn)行驗(yàn)證,可得②正確.
由f
n(x
n)=0,可得
xnn+2x
n-1=0,同取導(dǎo)數(shù)可得
xnn-1=
,故有
xnn-1 是增函數(shù),可得③不正確且④正確,從而得出結(jié)論.
解答:解:由f
n(x)=-x
n-2x+1(n≥2,n∈N),x∈(
,1),可得f
n(
)=-
()n-
+1=
-
()n>0,故①不正確.
根據(jù)f
n(
)=-
()n-
+1≥-
-
+1>0,f
n(1)=-1-2+1=-2<0,可得f
n(
)f
n(1)<0,
故f
n(x)在區(qū)間(
,1)一定存在唯一零點(diǎn),故②正確.
③若x
n是f
n(x)在(
,1)上的零點(diǎn),則f
n(x
n)=0,即-
xnn-2x
n+1=0,即
xnn+2x
n-1=0,
同取導(dǎo)數(shù)可得 n
xnn-1+2=0,即
xnn-1=
,∴
xnn-1 是增函數(shù),故③不正確且④正確,
故答案為:②④.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是零點(diǎn)存在定理,導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.