過(guò)拋物線C:y2=4x的焦點(diǎn)F的直線l交拋物線C于P,Q兩點(diǎn),若點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)為M,則直線QM的方程可能為( )
A.3x+2y+3=0
B.3x-5y+6=0
C.2x+3y+4=0
D.x-2y+1=0
【答案】分析:可通過(guò)P,M,Q三點(diǎn)向準(zhǔn)線作垂線,由有公共點(diǎn)B可得B,M,Q三點(diǎn)共線,即直線PQ一定過(guò)點(diǎn)B(-1,0)即直線一定過(guò)準(zhǔn)線與X軸交點(diǎn),結(jié)合選項(xiàng)可檢驗(yàn)
解答:解:由題意可得,y2=4x的焦點(diǎn)F91,0),準(zhǔn)線x=-1,由題意可設(shè)直線PQ的方程為x=ky+1
聯(lián)立方程可得y2-4ky-4=0
設(shè)P(x1,y1),Q(x2,y2),則M(x1,-y1),y1+y2=4k,y1y2=-4
過(guò)P,M,Q三點(diǎn)向準(zhǔn)線作垂線,垂足分別為A,C,D,準(zhǔn)線與x軸交點(diǎn)B(-1,0),

而(1+x1)y2+(1+x2)y1=x1y2+x2y1+y1+y2
=×(-1)k==0

有公共點(diǎn)B
∴B,M,Q三點(diǎn)共線,即直線PQ一定過(guò)點(diǎn)B(-1,0)
結(jié)合選項(xiàng)可知只有選項(xiàng)D符合條件
故選D
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)直線過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F,且交C于點(diǎn)M,N,設(shè)
MF
FN
(λ>0)

(I)若p=2,λ=4,求MN所在的直線方程;
(II)若p=2,4≤λ≤9,求直線MN在y軸上截距的取值范圍;
(III)拋物線C的準(zhǔn)線l與x軸交于點(diǎn)E,求證:
EF
EM
EN
的夾角為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線C:y2=4x的焦點(diǎn)F的直線l交拋物線C于P,Q兩點(diǎn),若點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)為M,則直線QM的方程可能為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線C:y2=4x的焦點(diǎn)F的直線l交拋物線C于P,Q兩點(diǎn),若點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)為M,則直線QM的方程可能為( 。
A.3x+2y+3=0B.3x-5y+6=0C.2x+3y+4=0D.x-2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省撫州市臨川一中高三4月模擬數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

過(guò)拋物線C:y2=4x的焦點(diǎn)F的直線l交拋物線C于P,Q兩點(diǎn),若點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)為M,則直線QM的方程可能為( )
A.3x+2y+3=0
B.3x-5y+6=0
C.2x+3y+4=0
D.x-2y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案