如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F分別是AD、PC的中點(diǎn).
(1)求證:EF面PAB;
(2)求EF與面ABCD所成角.
(1)取PB的中點(diǎn)G,連接FG、AG,則FGAE,F(xiàn)G=AE
∴四邊形AGFE為平行四邊形,
∴EFAG又EF?面PAB,AG?面PAB,
∴EF面PAB.
(2)由(1)知,AG與面ABCD所成角可為所求,
取AB中點(diǎn)H,連接GH,∵PA⊥面ABCD,
∴GH⊥面ABCD,則∠BAG=45°為所求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,動(dòng)點(diǎn)P在正方體ABCD-A1B1C1D1表面上運(yùn)動(dòng),且PA=r(0<r<
3
),記點(diǎn)P的軌跡的長(zhǎng)度為f(r),則f(
1
2
)
=______.(填上所有可能的值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點(diǎn)D是AB的中點(diǎn),
(1)求證:AC⊥BC1;
(2)求證:AC1平面CDB1
(3)求二面角C1-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知矩形ABCD,AB=2,BC=x,將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折過程中,則(  )
A.當(dāng)x=1時(shí),存在某個(gè)位置,使得AB⊥CD
B.當(dāng)x=
2
時(shí),存在某個(gè)位置,使得AB⊥CD
C.當(dāng)x=4時(shí),存在某個(gè)位置,使得AB⊥CD
D.?x>0時(shí),都不存在某個(gè)位置,使得AB⊥CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長(zhǎng)方體ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面對(duì)角線的交點(diǎn).
(Ⅰ)求證:B1D1平面BC1D;
(Ⅱ)求證:A1O⊥平面BC1D;
(Ⅲ)求三棱錐A1-DBC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,底面ABCD為邊長(zhǎng)為4的正方形,PA⊥平面ABCD,E為PB中點(diǎn),PB=4
2

(Ⅰ)求證:PD面ACE;
(Ⅱ)求三棱錐D-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EFAC,AB=
2
,CE=EF=1,∠ECA=60°.
(1)求證:AF平面BDE;
(2)求異面直線AB與DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知AB與CD為異面線段,CD?平面α,ABα,M、N分別是線段AC與BD的中點(diǎn),求證:MN平面α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,AB=1
(1)求異面直線A1B與B1C所成的角;
(2)求證:平面A1BD平面B1CD1

查看答案和解析>>

同步練習(xí)冊(cè)答案